Integrated Reaction and Separation Operations (eBook)
XII, 366 Seiten
Springer Berlin (Verlag)
978-3-540-30304-6 (ISBN)
Professor Dr.-Ing. Schmidt-Traub studied Chemical Engineering, first in Braunschweig then in Berlin, where he got his PhD and habilitation from the Technical University. He worked in leading positions in engineering for Krupp Koppers for 15 years. From 1989 to 2005 he held the chair of Plant Design at the University of Dortmund. He chaired Dechema as well as GVC working groups like 'Computer Applications in Chemical Engineering', 'Process and Plant Design' and 'Computer-aided Plant Engineering'. He was speaker of the Research Group ' Integrated Reaction and Separation Operations' by Deutsche Forschungsgemeinschaft (DFG). His main research activities are preparative chromatography, down stream processing, process design and plant engineering.
Professor Górak graduated from Technical University of Lodz, Poland, where he also got his PhD before he joined Henkel kGaA in Düsseldorf as senior researcher. In 1992 he has got his 'venia legendi' from RWTH Aachen and was appointed for Professor at Dortmund University. In 1996 he became Chair of Fluid Separations at University Essen and four years later at Dortmund University and is also Professor at the Technical University of Lodz, Poland. He is chairman of several German Working Parties on Fluid Separation and Process Simulation, editor for a leading Journal and has published about 150 referred papers and book chapters. His scientific interests are reactive and bioreactive separation processes, process intensification, computer aided process engineering.
Professor Dr.-Ing. Schmidt-Traub studied Chemical Engineering, first in Braunschweig then in Berlin, where he got his PhD and habilitation from the Technical University. He worked in leading positions in engineering for Krupp Koppers for 15 years. From 1989 to 2005 he held the chair of Plant Design at the University of Dortmund. He chaired Dechema as well as GVC working groups like "Computer Applications in Chemical Engineering", "Process and Plant Design" and "Computer-aided Plant Engineering". He was speaker of the Research Group " Integrated Reaction and Separation Operations" by Deutsche Forschungsgemeinschaft (DFG). His main research activities are preparative chromatography, down stream processing, process design and plant engineering. Professor Górak graduated from Technical University of Lodz, Poland, where he also got his PhD before he joined Henkel kGaA in Düsseldorf as senior researcher. In 1992 he has got his "venia legendi" from RWTH Aachen and was appointed for Professor at Dortmund University. In 1996 he became Chair of Fluid Separations at University Essen and four years later at Dortmund University and is also Professor at the Technical University of Lodz, Poland. He is chairman of several German Working Parties on Fluid Separation and Process Simulation, editor for a leading Journal and has published about 150 referred papers and book chapters. His scientific interests are reactive and bioreactive separation processes, process intensification, computer aided process engineering.
Preface 5
Corresponding Authors 8
Table of contents 9
1 Introduction 13
2 Synthesis of reactive separation processes 19
2.1 Introduction 19
2.2 Fundamental process synthesis concepts 20
2.3 Process synthesis strategy 29
2.3.1 Process goals 30
2.3.2 Data acquisition / thermodynamic analysis 30
2.3.3 Investigation of the reaction phase 31
2.3.4 Identification of incentives 31
2.3.5 Selection of the separation process 31
2.3.6 Knock-out criteria 33
2.3.7 Estimation of product regions for full integration 33
2.3.8 Measures to achieve the desired product quality 37
2.3.9 Necessity of additional steps 38
2.3.10 Simulation and optimization 38
2.3.11 Examples 39
2.4 Optimization of the process 73
2.4.1 The optimization model 75
2.4.2 Solution method 79
2.4.3 Examples 82
2.5 Conclusions 96
2.6 Notation 97
2.7 Literature 100
3 Catalytic distillation 107
3.1 Introduction 107
3.2 Basics of catalytic distillation 108
3.2.1 Catalyst 110
3.2.2 Internals 113
3.3 Modeling 115
3.3.1 Equilibrium stage model 117
3.3.2 Rate-based approach 118
3.4 Model parameters 122
3.4.1 Vapor-liquid equilibrium 122
3.4.2 Reaction kinetics 122
3.4.3 Hydrodynamics and mass transfer 124
3.4.4 Differential models 126
3.5 Case studies 127
3.5.1 Methyl acetate synthesis 127
3.5.2 Ethyl acetate synthesis 131
3.5.3 Ethyl acetate transesterification 135
3.5.4 Dimethyl carbonate transesterification 139
3.6 Conclusions 145
3.7 Notation 147
3.8 Literature 149
4 Reactive gas adsorption 160
4.1 Introduction 160
4.1.1 Gas-phase adsorptive reactors – operation and regeneration strategies 162
4.1.2 Comparison with related reactor concepts 164
4.2 Modeling of gas-phase adsorptive reactors 166
4.2.1 Model equations 166
4.2.2 Model implementation and numerical features 170
4.3 Design principles of adsorptive reactors 171
4.4 Conversion enhancement of equilibrium-limited reactions 172
4.4.1 Claus reaction 172
4.4.2 HCN-synthesis from CO and NH3 179
4.4.3 Water-gas shift reaction 183
4.5 Yield and selectivity enhancement for complex reaction schemes 183
4.5.1 Direct synthesis of DME from synthesis gas 184
4.5.2 Oxidative dehydrogenation of ethylbenzene to styrene 190
4.6 Conclusions 195
4.7 Notation 196
4.8 Literature 198
5 Reactive liquid chromatography 202
5.1 Introduction 202
5.2 Process concepts 203
5.2.1 Chromatographic batch reactor 203
5.2.2 Continuous annular reactor 204
5.2.3 Counter-current flow reactors 205
5.2.4 Degree of process integration 210
5.3 Modeling of simulated moving bed reactors 211
5.3.1 Rigorous models 213
5.3.2 TMBR model 219
5.3.3 Comparison of TMBR and SMBR 221
5.4 Experimental model validation 222
5.4.1 Parameter determination 222
5.4.2 Production of -phenethylacetate 225
5.4.3 Thermal racemization of Troegers Base 228
5.5 Short-cut design methods for SMB reactors 230
5.5.1 Reactions of type A + B C + D 231
5.5.2 Other types of reaction 235
5.5.3 Short-cut calculation for irreversible esterification 236
5.6 Design of chromatographic reactors 237
5.6.1 Choice of the chromatographic system 237
5.6.2 Model based optimization of design and operating parameters 238
5.6.3 Evaluation and application of chromatographic reactors 240
5.7 Notation 245
5.8 Literature 247
6 Reactive extraction 251
6.1 Introduction 251
6.2 Reactive extraction systems 251
6.2.1 Separation processes 252
6.2.2 Synthesis processes 253
6.3 System analysis and plant design 254
6.3.1 Analysis of the reaction system 256
6.4 Modelling 258
6.4.1 Mini-plant design 259
6.5 Experiments in the continuous mini-plant 264
6.6 Conclusions 267
6.7 Literature 268
7 Optimization and control of reactive chromatographic processes 269
7.1 Introduction 269
7.2 The simulated moving bed process 270
7.2.1 The variable column length (VARICOL) process 272
7.3 Integration of reaction and separation – the Hashimoto SMB process 273
7.4 Mathematical modelling 279
7.5 Steady state optimization of SMB processes 281
7.5.1 General approach 281
7.5.2 Examples 283
7.6 Optimization of the design of a Hashimoto SMB process 291
7.7 Control of reactive SMB processes 295
7.7.1 Online optimizing control 296
7.7.2 Parameter estimation 299
7.7.3 Application study – racemisation of Troeger’s Base 300
7.8 Conclusions 302
7.9 Notation 303
7.10 Literature 305
8 Controlling reactive distillation 308
8.1 Introduction 308
8.2 The reactive distillation column 310
8.2.1 Chemical preliminaries 310
8.2.2 The reactive distillation column 310
8.3 Control structure selection 313
8.3.1 Motivation 313
8.3.2 Degrees of freedom and measurement equipment 313
8.3.3 Steady-state process operability 314
8.3.4 Dynamic process operability 317
8.4 Model refinement by linear system identification 321
8.4.1 Choice of the identification signal 321
8.4.2 Linear model identification: Data pretreatment and regression 323
8.4.3 Model order reduction 324
8.5 Model uncertainty assessment 328
8.5.1 Model error model 329
8.5.2 Data-driven computation of uncertainty bounds 330
8.6 Controller design 332
8.6.1 Control performance specification 333
8.6.2 Controller reduction 337
8.7 Conclusions 343
8.8 Literature 345
9 Multifunctionality at particle level – Studies for adsorptive catalysts 348
9.1 Introduction 348
9.2 Integration of adsorptive functionality on particle scale 350
9.3 Test reaction scheme 353
9.4 Modeling of adsorptive catalyst 354
9.5 Results and discussion 358
9.5.1 Particle level integration vs. conventional particles 358
9.5.2 Particle level integration vs. particle structuring 359
9.5.3 Relevance of macro- and microstructuring 364
9.6 Conclusions 366
9.7 Literature 367
Index 369
Erscheint lt. Verlag | 29.12.2007 |
---|---|
Zusatzinfo | XII, 366 p. |
Verlagsort | Berlin |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Naturwissenschaften ► Chemie | |
Technik | |
Wirtschaft ► Betriebswirtschaft / Management ► Logistik / Produktion | |
Schlagworte | Adsorption • biochemical engineering • chromatographic reactors • Chromatography • Distillation • Experimental validation • Integrated process • Process • Process Control • Process Integration • Process intensification • Process Modelling • process synthesis • Reactive adsorption • Reactive di • Reactive distillation • Separation processes |
ISBN-10 | 3-540-30304-9 / 3540303049 |
ISBN-13 | 978-3-540-30304-6 / 9783540303046 |
Haben Sie eine Frage zum Produkt? |
Größe: 10,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich