Recommender Systems - Dietmar Jannach, Markus Zanker, Alexander Felfernig, Gerhard Friedrich

Recommender Systems

An Introduction
Buch | Hardcover
352 Seiten
2010
Cambridge University Press (Verlag)
978-0-521-49336-9 (ISBN)
85,95 inkl. MwSt
This book introduces different approaches to developing recommender systems that automate choice-making strategies to provide affordable, personal, and high-quality recommendations.
In this age of information overload, people use a variety of strategies to make choices about what to buy, how to spend their leisure time, and even whom to date. Recommender systems automate some of these strategies with the goal of providing affordable, personal, and high-quality recommendations. This book offers an overview of approaches to developing state-of-the-art recommender systems. The authors present current algorithmic approaches for generating personalized buying proposals, such as collaborative and content-based filtering, as well as more interactive and knowledge-based approaches. They also discuss how to measure the effectiveness of recommender systems and illustrate the methods with practical case studies. The final chapters cover emerging topics such as recommender systems in the social web and consumer buying behavior theory. Suitable for computer science researchers and students interested in getting an overview of the field, this book will also be useful for professionals looking for the right technology to build real-world recommender systems.

Dietmar Jannach is a chaired Professor of Computer Science at TU Dortmund, Germany. The author of more than 100 scientific papers, he is a member of the editorial board of the Applied Intelligence journal and the review board of the International Journal of Electronic Commerce. Markus Zanker is an associate professor at the Alpen-Adria University, Klagenfurt, Austria. He directs the research group on recommender systems and is the director of the study programme in information management. In 2010 he was the program co-chair of the 4th International ACM Conference on Recommender Systems. He has published numerous papers in the area of artificial intelligence focusing on recommender systems, consumer buying behavior and human factors. He is also an associate editor of the International Journal of Human-Computer Studies. Alexander Felfernig is Professor of Applied Software Engineering at the Graz University of Technology (TU Graz). In his research he focuses on intelligent methods and algorithms supporting the development and maintenance of complex knowledge bases. Furthermore, Alexander is interested in the application of AI techniques in the software engineering context, for example, the application of decision and recommendation technologies to make software requirements engineering processes more effective. For his research he received the Heinz–Zemanek Award from the Austrian Computer Society in 2009. Gerhard Friedrich is a chaired Professor at the Alpen-Adria Universität Klagenfurt, Austria, where he is head of the Institute of Applied Informatics and directs the Intelligent Systems and Business Informatics research group. He is an editor of AI Communications and an associate editor of the International Journal of Mass Customisation.

1. Introduction; Part I. Introduction into Basic Concepts: 2. Collaborative recommendation; 3. Content-based recommendation; 4. Knowledge-based recommendation; 5. Hybrid recommendation approaches; 6. Explanations in recommender systems; 7. Evaluating recommender systems; 8. Case study - personalized game recommendations on the mobile Internet; Part II. Recent Developments: 9. Attacks on collaborative recommender systems; 10. Online consumer decision making; 11. Recommender systems and the next-generation Web; 12. Recommendations in ubiquitous environments; 13. Summary and outlook.

Erscheint lt. Verlag 30.9.2010
Zusatzinfo 29 Tables, unspecified; 8 Halftones, unspecified; 64 Line drawings, unspecified
Verlagsort Cambridge
Sprache englisch
Maße 155 x 231 mm
Gewicht 600 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Informatik Web / Internet
Wirtschaft Betriebswirtschaft / Management Marketing / Vertrieb
ISBN-10 0-521-49336-6 / 0521493366
ISBN-13 978-0-521-49336-9 / 9780521493369
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95