Elementary Probability Theory - Kai Lai Chung, Farid AitSahlia

Elementary Probability Theory

With Stochastic Processes and an Introduction to Mathematical Finance
Buch | Softcover
404 Seiten
2010 | Softcover reprint of hardcover 4th ed. 2003
Springer-Verlag New York Inc.
978-1-4419-3062-0 (ISBN)
60,98 inkl. MwSt
In this edition two new chapters, 9 and 10, on mathematical finance are added. For the reader whose main interest is in finance, only a portion of the first eight chapters is a "prerequisite" for the study of the last two chapters.
In this edition two new chapters, 9 and 10, on mathematical finance are added. They are written by Dr. Farid AitSahlia, ancien eleve, who has taught such a course and worked on the research staff of several industrial and financial institutions. The new text begins with a meticulous account of the uncommon vocab­ ulary and syntax of the financial world; its manifold options and actions, with consequent expectations and variations, in the marketplace. These are then expounded in clear, precise mathematical terms and treated by the methods of probability developed in the earlier chapters. Numerous graded and motivated examples and exercises are supplied to illustrate the appli­ cability of the fundamental concepts and techniques to concrete financial problems. For the reader whose main interest is in finance, only a portion of the first eight chapters is a "prerequisite" for the study of the last two chapters. Further specific references may be scanned from the topics listed in the Index, then pursued in more detail.

1 Set.- 1.1 Sample sets.- 1.2 Operations with sets.- 1.3 Various relations.- 1.4 Indicator.- Exercises.- 2 Probability.- 2.1 Examples of probability.- 2.2 Definition and illustrations.- 2.3 Deductions from the axioms.- 2.4 Independent events.- 2.5 Arithmetical density.- Exercises.- 3 Counting.- 3.1 Fundamental rule.- 3.2 Diverse ways of sampling.- 3.3 Allocation models; binomial coefficients.- 3.4 How to solve it.- Exercises.- 4 Random Variables.- 4.1 What is a random variable?.- 4.2 How do random variables come about?.- 4.3 Distribution and expectation.- 4.4 Integer-valued random variables.- 4.5 Random variables with densities.- 4.6 General case.- Exercises.- Appendix 1: Borel Fields and General Random Variables.- 5 Conditioning and Independence.- 5.1 Examples of conditioning.- 5.2 Basic formulas.- 5.3 Sequential sampling.- 5.4 Pólya’s urn scheme.- 5.5 Independence and relevance.- 5.6 Genetical models.- Exercises.- 6 Mean, Variance, and Transforms.- 6.1 Basic properties of expectation.- 6.2 The density case.- 6.3 Multiplication theorem; variance and covariance.- 6.4 Multinomial distribution.- 6.5 Generating function and the like.- Exercises.- 7 Poisson and Normal Distributions.- 7.1 Models for Poisson distribution.- 7.2 Poisson process.- 7.3 From binomial to normal.- 7.4 Normal distribution.- 7.5 Central limit theorem.- 7.6 Law of large numbers.- Exercises.- Appendix 2: Stirling’s Formula and de Moivre-Laplace’ Theorem.- 8 From Random Walks to Markov Chains.- 8.1 Problems of the wanderer or gambler.- 8.2 Limiting schemes.- 8.3 Transition probabilities.- 8.4 Basic structure of Markov chains.- 8.5 Further developments.- 8.6 Steady state.- 8.7 Winding up (or down?).- Exercises.- Appendix 3: Martingale.- 9 Mean-Variance Pricing Model.- 9.1 An investments primer.- 9.2 Asset return and risk.- 9.3 Portfolio allocation.- 9.4 Diversification.- 9.5 Mean-variance optimization.- 9.6 Asset return distributions.- 9.7 Stable probability distributions.- Exercises.- Appendix 4: Pareto and Stable Laws.- 10 Option Pricing Theory.- 10.1 Options basics.- 10.2 Arbitrage-free pricing: 1-period model.- 10.3 Arbitrage-free pricing: N-period model.- 10.4 Fundamental asset pricing theorems.- Exercises.- General References.- Answers to Problems.- Values of the Standard Normal Distribution Function.

Erscheint lt. Verlag 1.12.2010
Reihe/Serie Undergraduate Texts in Mathematics
Zusatzinfo XIV, 404 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Wirtschaft Betriebswirtschaft / Management
ISBN-10 1-4419-3062-0 / 1441930620
ISBN-13 978-1-4419-3062-0 / 9781441930620
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
69,95
Elastostatik

von Dietmar Gross; Werner Hauger; Jörg Schröder …

Buch | Softcover (2024)
Springer Vieweg (Verlag)
33,36