Control of Plant Virus Diseases -

Control of Plant Virus Diseases (eBook)

Vegetatively-Propagated Crops
eBook Download: PDF | EPUB
2015 | 1. Auflage
332 Seiten
Elsevier Science (Verlag)
978-0-12-802763-9 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
122,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The first review series in virology and published since 1953, Advances in Virus Research covers a diverse range of in-depth reviews, providing a valuable overview of the field. The series of eclectic volumes are valuable resources to virologists, microbiologists, immunologists, molecular biologists, pathologists, and plant researchers.

Volume 91 features articles on control of plant virus diseases.


  • Contributions from leading authorities
  • Comprehensive reviews for general and specialist use
  • First and longest-running review series in virology

The first review series in virology and published since 1953, Advances in Virus Research covers a diverse range of in-depth reviews, providing a valuable overview of the field. The series of eclectic volumes are valuable resources to virologists, microbiologists, immunologists, molecular biologists, pathologists, and plant researchers. Volume 91 features articles on control of plant virus diseases. Contributions from leading authorities Comprehensive reviews for general and specialist use First and longest-running review series in virology

Front Cover 1
Control of Plant Virus Diseases: Vegetatively-Propagated Crops 4
Copyright 5
Contents 6
Contributors 10
Preface 12
Reference 12
Chapter One: Principles for Supplying Virus-Tested Material 14
1. Introduction 15
2. Virus Detection 16
3. Virus Elimination 19
3.1. Thermotherapy 19
3.2. Low-temperature therapy 20
3.3. Meristem culture in vitro 20
3.4. Micrografting in vitro 21
3.5. Chemotherapy 23
3.6. Cryotherapy 25
3.7. Combination of methods 27
3.7.1. Thermotherapy and apical meristem culture or shoot-tip grafting 27
3.7.2. Chemotherapy and tissue culture or shoot-tip grafting 28
3.7.3. Chemotherapy, thermotherapy, and meristem in vitro culture 28
4. Certification Schemes and Programs 28
4.1. Principles 30
4.2. Harmonization 31
4.3. Effectiveness 35
5. Prospects 36
Acknowledgments 37
References 37
Chapter Two: Control of Sweet Potato Virus Diseases 46
1. Introduction 47
2. The Main Viruses 48
2.1. Sweet potato feathery mottle virus Genus Potyvirus 48
2.2. Sweet potato chlorotic stunt virus Genus Crinivirus 49
2.3. Sweet potato mild mottle virus Genus Ipomovirus 50
2.4. Sweet potato latent virus Genus Potyvirus 51
2.5. Sweet potato leaf curl virus Genus Begomovirus 52
3. Transgenic Approaches to Control the Viruses in Sweet Potato 52
3.1. The orthodox approach for control 54
References 55
Chapter Three: Control of Pome and Stone Fruit Virus Diseases 60
1. Introduction: The Importance of Temperate Fruit Trees Worldwide 61
2. Major Viruses Affecting Temperate Fruit Trees 62
2.1. Family: Betaflexiviridae 63
2.1.1. Genus: Trichovirus 63
2.1.1.1. Apple chlorotic leaf spot virus 63
2.1.1.2. Cherry mottle leaf virus 64
2.1.2. Genus: Capillovirus 64
2.1.2.1. Apple stem grooving virus 64
2.1.3. Genus: Foveavirus 65
2.1.3.1. Apple stem pitting virus 65
2.1.4. Genus: Unassigned 65
2.1.4.1. Cherry green ring mottle virus 65
2.2. Family: Bromoviridae 66
2.2.1. Genus: Ilarvirus 66
2.2.1.1. Prunus necrotic ringspot virus 66
2.2.1.2. Apple mosaic virus 66
2.2.1.3. Prune dwarf virus 67
2.3. Family: Closteroviridae 68
2.3.1. Genus: Ampelovirus 68
2.3.1.1. Little cherry virus 1 and Little cherry virus 2 (LChV-1 and LChV-2) 68
2.4. Family: Potyviridae 69
2.4.1. Genus: Potyvirus 69
2.4.1.1. Plum pox virus 69
3. Reliable and Sensitive Detection Methods 70
4. Present Control Methods 73
4.1. Exclusion of the pathogen(s) by crop quarantine 74
4.2. Exclusion of the pathogen(s) by crop certification 75
4.3. Control of pathogens by eradication of infected cultivars and rootstocks 77
4.4. Controlling viral insect vectors 77
4.5. Elimination of pathogen in planting material 78
4.6. Selection of tolerant and/or resistant crop cultivars 79
5. Transgenic Approaches to Induce Virus Resistance in Temperate Fruit Trees 80
References 85
Chapter Four: Cassava Virus Diseases: Biology, Epidemiology, and Management 98
1. Introduction 99
1.1. Cassava: the plant, its cultivation and current economic importance 99
1.2. Threats to cassava production 100
2. Biology and Epidemiology of Cassava Viruses 101
2.1. Viruses of cassava 101
2.1.1. Africa and South Asia 101
2.1.1.1. Introduction 101
2.1.1.2. Cassava mosaic geminiviruses 105
2.1.1.3. Cassava brown streak viruses 108
2.1.2. Latin America 109
2.2. Diseases caused by cassava viruses 111
2.2.1. Cassava mosaic disease 111
2.2.2. Cassava brown streak disease 112
2.2.3. Cassava frogskin disease 113
2.3. Vectors of cassava viruses 113
2.3.1. Cassava mosaic geminiviruses 113
2.3.2. Cassava brown streak viruses 114
2.3.3. Viruses associated with CFSD 114
2.4. Epidemiology of cassava viruses 115
2.4.1. Cassava mosaic geminiviruses 115
2.4.2. Cassava brown streak viruses 116
2.4.3. Latin American viruses 117
3. Management of Cassava Viruses 117
3.1. Management strategies for plant viruses in cassava 117
3.1.1. Recognition and monitoring 117
3.1.2. Prevention of infection 118
3.1.3. Control of infection 119
3.2. Diagnostics and surveillance 119
3.2.1. Cassava virus diagnostics in Africa 120
3.2.2. Cassava virus diagnostics in South Asia 121
3.2.3. Cassava virus diagnostics in Latin America 122
3.2.4. Cassava virus surveillance 122
3.3. Quarantine systems 123
3.4. Phytosanitation and clean seed 125
3.4.1. Producing virus-free planting materials 125
3.4.1.1. Meristem tip culture and thermotherapy 125
3.4.1.2. Field application of thermotherapy and hot water treatment 126
3.4.1.3. Field propagation of virus-free stocks of ``clean seed´´ 126
3.4.2. Managing the health of cassava crops in the field 126
3.4.2.1. Roguing 127
3.4.2.2. Selection 127
3.4.2.3. Crop management and disposition 128
3.4.2.4. Intercropping 128
3.4.3. Implementing large-scale phytosanitation initiatives 129
3.4.3.1. Certification 129
3.4.3.2. Eradication 129
3.5. Conventional breeding for resistance 130
3.5.1. Introduction 130
3.5.2. Breeding for resistance to CMD in Africa 131
3.5.3. Breeding for resistance to CBSD in Africa 132
3.5.4. Breeding for resistance to CMD in South Asia 134
3.5.5. Breeding for resistance to CFSD in Latin America 135
3.5.6. The deployment of virus-resistant cassava varieties in Africa 135
3.6. Molecular breeding using next-generation methods 138
3.7. Transgenic approaches to strengthening host plant resistance 139
3.7.1. Introduction 139
3.7.2. Transgenic approaches to developing CMD resistance 139
3.7.3. Transgenic approaches to developing CBSD resistance 140
3.8. Vector control 141
4. Conclusions 142
Acknowledgments 143
References 144
Chapter Five: Control of Virus Diseases of Citrus 156
1. Introduction 157
2. Commonly Encountered Citrus Viruses and Graft-Transmissible Diseases 158
2.1. Citrus tristeza virus 158
2.2. Citrus psorosis virus (including citrus ringspot) 159
2.3. Concave gum disease 160
2.4. Impietratura disease 161
2.5. Cristacortis disease 161
2.6. Citrus vein enation 161
2.7. Citrus blight disease 162
2.8. Citrus viroids 163
2.9. Citrus tatterleaf virus 165
2.10. Citrus leaf blotch 165
2.11. Measles disease 165
2.12. Yellow vein 166
2.13. Citrus leprosis 166
2.14. Citrus yellow mosaic 167
2.15. Satsuma dwarf 167
3. Other Insect-Spread Diseases Caused by Prokaryotes Which Need to be Considered in Control/Management of Citrus Viruses... 168
3.1. Huanglongbing 168
3.2. Stubborn disease 169
3.3. Citrus variegated chlorosis 170
4. Methods of Control of Graft-Transmissible Pathogens of Citrus 171
4.1. Quarantine programs 171
4.2. Clean Stock Programs 176
4.3. Certification Programs 177
5. Other Methods of Control 177
5.1. Pest management areas 177
5.2. Mild strain cross-protection 178
5.3. CP-mediated resistance 179
5.4. RNA-mediated resistance 179
References 180
Chapter Six: Control of Viruses Infecting Grapevine 188
1. Origin, Botany, and Economic Importance of Grapevine (Vitis vinifera L.) 189
2. The Main Viruses Infecting Grapevine 189
2.1. Closterovirids associated with grapevine leafroll disease 190
2.2. Flexivirids related to the RW disease complex 195
2.3. Nepoviruses responsible for grapevine fanleaf degeneration 198
3. Diagnosis of Grapevine Viruses 200
3.1. Biological indexing 200
3.2. Serological assays 200
3.3. Molecular assays 201
4. Control 202
4.1. Introduction 202
4.2. Production and use of certified propagative material 203
4.2.1. The principles 203
4.2.2. The International Council for the Study of Virus and Virus-like Diseases of the Grapevine 205
4.2.3. Certification in non-EU countries 205
4.2.3.1. United States of America 205
4.2.3.2. Canada 206
4.2.3.3. Argentina and Chile 207
4.2.3.4. South Africa 207
4.2.3.5. New Zealand and Australia 208
4.2.4. Certification in the EU 208
4.3. Methods used for virus elimination 210
4.3.1. Thermotherapy 210
4.3.2. Meristem tip, shoot tip culture, and somatic embryogenesis 213
4.3.3. Chemotherapy 214
4.3.4. Cryotherapy 215
4.3.5. Electrotherapy 216
4.4. Control of virus vectors 216
4.4.1. Cultural control 217
4.4.1.1. Crop rotation and fallow period 217
4.4.1.2. Other cultural methods 217
4.4.2. Biological control of the nematode and mealybug vectors 218
4.4.2.1. Nematodes 218
4.4.2.2. Mealybugs/soft scale insects 218
4.4.3. Chemical control 219
4.4.3.1. Nematodes 219
4.4.3.2. Mealybugs/soft scales 219
4.5. Resistance to viruses and vectors 220
4.5.1. Resistance to viruses and their vectors in Vitis spp 220
4.5.2. Engineered resistance to viruses and their vectors 221
4.5.3. Virus-resistant transgenic grapevines and environmental safety issues 224
4.5.4. Virus-resistant transgenic grapevines and social perception 225
5. Concluding Remarks 226
Acknowledgments 228
References 228
Chapter Seven: Biology, Etiology, and Control of Virus Diseases of Banana and Plantain 242
1. Introduction 243
2. Major Virus Diseases of Banana and Plantain 246
2.1. Banana bunchy top disease 246
2.1.1. Disease discovery and biology 246
2.1.2. Symptoms and economic importance 247
2.1.3. Transmission 249
2.1.4. Geographic distribution and host range 250
2.1.5. BBTV diversity 251
2.1.6. BBTV diagnostics 253
2.1.7. Options for BBTV control 254
2.1.7.1. Integrated disease control by exclusion, eradication, and use of virus-free plants 254
2.1.7.2. Host resistance 256
2.1.7.3. Vector control 257
2.2. Banana streak disease 258
2.2.1. Disease discovery and biology 258
2.2.2. Symptoms 259
2.2.3. Transmission and geographic distribution 259
2.2.4. Virus diversity 260
2.2.5. Diagnostics 260
2.2.6. Control 263
2.3. Banana bract mosaic 264
2.3.1. Distribution and biology 264
2.3.2. Host range and transmission 266
2.3.3. Virus diversity 266
2.3.4. Diagnosis 267
2.3.5. Control 267
3. Minor Virus Diseases 267
3.1. Abaca bunchy top 267
3.2. Abaca mosaic 268
3.3. Banana mosaic 268
3.4. Banana mild mosaic 269
3.5. Banana virus X 269
4. Conclusions 270
References 271
Chapter Eight: Control of Virus Diseases of Berry Crops 284
1. Introduction 285
2. Virus Control During Plant Propagation 288
3. Detection 289
4. Certification Schemes 290
5. Generating and Testing G1 Plants 293
6. Virus Control in Berry Crops 296
7. Virus Control in Nurseries 297
8. BMPs, Knowing the High-Risk Viruses 312
9. Virus Control in Commercial Fields 313
9.1. Virus Resistance and Tolerance 314
9.2. Vector Resistance 315
9.3. High-risk Viruses and Mixed Infections 316
9.4. Coordinated Control Efforts 317
References 319
Index 324
Color Plate 333

Chapter Two

Control of Sweet Potato Virus Diseases


Gad Loebenstein*    Department of Plant Pathology, Agricultural Research Organization, Bet Dagan, Israel
* Corresponding author: email address: gad-talma@barak.net.il

Abstract


Sweet potato (Ipomoea batatas) is ranked seventh in global food crop production and is the third most important root crop after potato and cassava. Sweet potatoes are vegetative propagated from vines, root slips (sprouts), or tubers. Therefore, virus diseases can be a major constrain, reducing yields markedly, often more than 50%. The main viruses worldwide are Sweet potato feathery mottle virus (SPFMV) and Sweet potato chlorotic stunt virus (SPCSV). Effects on yields by SPFMV or SPCSV alone are minor, or but in complex infection by the two or other viruses yield losses of 50%. The orthodox way of controlling viruses in vegetative propagated crops is by supplying the growers with virus-tested planting material. High-yielding plants are tested for freedom of viruses by PCR, serology, and grafting to sweet potato virus indicator plants. After this, meristem tips are taken from those plants that reacted negative. The meristems were grown into plants which were kept under insect-proof conditions and away from other sweet potato material for distribution to farmers after another cycle of reproduction.

Keywords

Sweet potato feathery mottle virus

Sweet potato chlorotic stunt virus

Sweet potato virus disease

Bemisia tabaci

Diagnosis of sweet potato viruses

Transgenic approaches for control

Virus-tested propagation material

1 Introduction


Sweet potato (Ipomoea batatas) is ranked seventh in global food crop production and is the third most important root crop after potato and cassava. They are grown on about 8.1 million hectares, yielding ca. 131 million tons, with an average yield of about 15 t/ha (FAOSTAT, 2011). They are mainly grown in developing countries, which account for over 95% of world output. The cultivated area of sweet potato in China, about 3.7 million hectares, accounted for 70% of the total area of sweet potato cultivation in the world. China produces about 80 million tons, ca. 46% of the total world production. Vietnam is the second largest producer. Sweet potato is a “poor man's crop,” with most of the production done on a small or subsistence level. Sweet potato produces more biomass and nutrients per hectare than any other food crop in the world. Thus, for example, across East Africa's semiarid, densely populated plains, thousands of villages depend on sweet potato for food security and the Japanese used it when typhoons demolished their rice fields. Sweet potato is grown for both the leaves, which are used as greens, and the tubers, for a high carbohydrate and beta-carotene source. Yields differ greatly in different areas or even fields in the same location. Thus, the average yield in African countries is about 4.7 t/ha, with yields of 9.1, 4.5, 1.9, and 2.9 t/ha in Kenya, Uganda, Sierra Leone, and Nigeria, respectively. The yields in Asia are significantly higher, averaging 20.0 t/ha. China, Japan, Korea, and Israel have the highest yields with about 22.0, 21.7, 15.6, and 33.3 t/ha, respectively. In South America, the average yield is 12.3 t/ha, with Argentina, Peru, and Uruguay in the lead with 14, 16.8, and 10.9 t/ha, respectively. For comparison, the average yield in the United States is 22.8 t/ha (FAOSTAT, 2012).

These differences in yields are mainly due to variation in quality of the propagation material. Sweet potatoes are vegetative propagated from vines, root slips (sprouts), or tubers, and farmers in African and other countries often take vines for propagation from their own fields year after year. Thus, if virus diseases are present in the field they will inevitable be transmitted with the propagation material to the newly planted field, resulting in a decreased yield. Often these fields are infected with several viruses, thereby compounding the effect on yields. In China, on average, losses of over 20% due to sweet potato virus diseases (SPVDs) are observed (Gao, Gong, & Zhang, 2000), mainly due to Sweet potato feathery mottle virus (SPFMV) and Sweet potato latent virus (SPLV). The infection rate in the Shandong province reaches 5–41% (Shang et al., 1999). In countries were care is taken to provide virus-tested planting material as, among others in the United States and Israel, yields increase markedly, up to seven times and more.

2 The Main Viruses


2.1 Sweet potato feathery mottle virus Genus Potyvirus


Sweet potato feathery mottle virus Genus Potyvirus (SPFMV) is the most common sweet potato virus worldwide. Certain isolates in the United States cause much economic damage by inducing cracking or internal corkiness in some cultivars. In Africa, SPFMV causes a SPVD in a complex infection with the whitefly-transmitted Sweet potato sunken vein virus Genus Crinivirus (SPSVV) [synonym: Sweet potato chlorotic stunt Genus Crinivirus (SPCSV)].

Most sweet potato cultivars infected by SPFMV alone show only mild circular spots on their leaves or light green patterns along veins. However, when infected together with the whitefly-transmitted SPSVV stunting of the plants, feathery vein clearing, and yellowing of the plants are observed. In controlled experiments, SPFMV-infection alone did not reduce yields compared to virus-free controls, while the complex infection with SPCSV reduced yields by 50% or more SPFMV is transmitted in a nonpersistent manner by aphids, including Aphis gossypii, Myzus persicae, A. craccivora, and Lipaphis erysimi. The virus can be transmitted mechanically to various Ipomoea sp., as I. batatas, I. setosa, I. nil, I. incarnata, and I. purpurea, and Nicotiana benthamiana and Chenopodium amaranticolor (for some strains). The virus is transmitted by grafting but not by seed or pollen or by contact between plants. The virus can best be diagnosed by grafting on I. setosa, causing vein clearing or on I. incarnata and I. nil inducing systemic vein clearing, vein banding, and ringspots. SPFMV can be diagnosed by ELISA, and antisera are commercially available. However, ELISA reliably detects SPFMV only in leaves with symptoms. It is best to sample several leaves from a plant, as the virus seems to be unevenly distributed. SPFMV can also be detected together with three other sweet potato viruses by multiple one-step reverse transcription-PCR (Li et al., 2012).

East Africa (EA) appears as a hotspot for evolution and diversification of SPFMV (Tugume, Settumba Mukasa, & Omongo, 2010).

Virions are filamentous, not enveloped, usually flexuous, and with a modal length of 830–850 nm. The genome consists of single-stranded linear RNA, with a poly(A) region. Many strains of SPFMV (Moyer, 1986), isolates, variants, and serotypes of SPFMV have been reported By comparing coat protein (CP) gene sequences of isolates, it was shown that isolates from EA form a separate cluster (Kreuze, Karyeija, Gibson, & Valkonen, 2000). The complete nucleotide sequence of a sweet potato feathery mottle virus severe strain (SPFMV-S) genomic RNA was determined from overlapping cDNA clones and by directly sequencing viral RNA. The viral RNA genome is 10,820 nucleotides long, excluding the poly(A) tail and contains one open reading frame starting at nucleotide 118 and ending at 10,599, potentially encoding a polyprotein of 3493 amino acids (Mr 393,800) (Sakai et al., 1997). Though SPFMV alone generally causes only minor damage, its control is imperative as in combination with other viruses its effect on plant growth and yields may become substantial.

2.2 Sweet potato chlorotic stunt virus Genus Crinivirus


Infection of sweet potato by Sweet potato chlorotic stunt virus Genus Crinivirus (SPCSV; possible synonym: Sweet potato sunken vein virus, SPSVV) alone produced on cv. Georgia Jet mild symptoms consisting of slight yellowing of veins, with some sunken secondary veins on the upper sides of the leaves and swollen veins on their lower sides. Upward rolling of the three to five distal leaves was also observed. Effects on yields by SPSVV or SPCSV alone are minor or but in complex infection with SPFMV or other viruses yield losses of 50% and more are observed (Milgram, Cohen, & Loebenstein, 1996; Untiveros, Fuentes, & Salazar, 2007). This was concurrent with a significant reduction in chlorophyll content (Njeru et al., 2004).

SPCSV and/or SPSVV are transmitted by the whitefly Bemisia tabaci biotype B, Trialeurodes abutilonea, and B. afer (Gamarra et al., 2010; Ng & Falk, 2006; Schaefers & Terry, 1976; Sheffield, 1957; Sim, Valverde, & Clark, 2000; Valverde, Sim, & Lotrakul, 2004) in a semipersistent manner, requiring at least 1 h for acquisition and infection feeding and reaching a maximum after 24 h for...

PDFPDF (Adobe DRM)
Größe: 13,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 14,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich