Dealing with Contaminated Sites (eBook)
XXVIII, 1104 Seiten
Springer Netherland (Verlag)
978-90-481-9757-6 (ISBN)
This standard work on contaminated site management covers the whole chain of steps involved in dealing with contaminated sites, from site investigation to remediation. An important focus throughout the book is on Risk Assessment. In addition, the book includes chapters on characterisation of natural and urban soils, bioavailability, natural attenuation, policy and stakeholder viewpoints and Brownfields. Typically, the book includes in-depth theories on soil contamination, along with offering possibilities for practical applications. More than sixty of the world's top experts from Europe, the USA, Australia and Canada have contributed to this book. The twenty-five chapters in this book offer relevant information for experienced scientists, students, consultants and regulators, as well as for 'new players' in contaminated site management
This standard work on contaminated site management covers the whole chain of steps involved in dealing with contaminated sites, from site investigation to remediation. An important focus throughout the book is on Risk Assessment. In addition, the book includes chapters on characterisation of natural and urban soils, bioavailability, natural attenuation, policy and stakeholder viewpoints and Brownfields. Typically, the book includes in-depth theories on soil contamination, along with offering possibilities for practical applications. More than sixty of the world's top experts from Europe, the USA, Australia and Canada have contributed to this book. The twenty-five chapters in this book offer relevant information for experienced scientists, students, consultants and regulators, as well as for 'new players' in contaminated site management
About the Editor 3
Preface 7
Acknowledgments 9
Reviewers 10
Contents 12
Contributors 15
Part I Introduction 27
1 Introduction to Contaminated Site Management 28
1.1 Status of Contaminated Sites 30
1.1.1 History 30
1.1.1.1 Early Soil Contamination 30
1.1.1.2 Public and Political Awareness 31
1.1.2 The Present Situation 32
1.1.2.1 Extent of Soil Contamination 32
1.1.2.2 Emissions to Soil 32
1.1.3 Public Awareness 35
1.1.4 The Contaminated Site Management Framework 36
1.1.4.1 Schematization 36
1.1.4.2 Problem Definition 37
1.1.4.3 Protection Targets 38
1.1.4.4 Land Use 39
1.2 Soils and Sites 40
1.2.1 Soils 40
1.2.1.1 Definition 40
1.2.2 Contaminated Sites 43
1.3 Contaminants 45
1.3.1 Terminology 45
1.3.2 Daily Life 45
1.3.3 Categorisation 46
1.3.3.1 Metals and Metalloids 47
1.3.3.2 Other Inorganic Contaminants (Other than Metals and Metalloids) 48
1.3.3.3 Polycyclic Aromatic Hydrocarbons 48
1.3.3.4 Monocyclic Aromatic Hydrocarbons 48
1.3.3.5 Persistent Organic Pollutants 49
1.3.3.6 Volatile Organic Contaminants 49
1.3.3.7 Other Organochlorides 50
1.3.3.8 Petroleum Hydrocarbons 50
1.3.3.9 Asbestos 51
1.3.4 Occurrence in Soils and Groundwater 52
1.3.5 Mixtures of Contaminants 52
1.3.6 Scope of This Book 53
1.4 Site Characterisation 53
1.5 Risk Assessment 55
1.5.1 Principles 55
1.5.2 The Concept of Risk 56
1.5.3 Procedure 57
1.5.4 Reliability 60
1.5.4.1 Uncertainties and Variability 60
1.5.4.2 Dealing with Uncertainties and Variability 61
1.5.4.3 Validation 63
1.6 Risk Management 64
1.6.1 Scope 64
1.6.2 The Source 65
1.6.3 Procedures 65
1.6.4 Remediation Technologies 66
1.6.4.1 Scope 66
1.6.4.2 In Situ Remediation Technologies 66
1.6.4.3 Ex Situ Remediation Technologies 69
1.6.4.4 Barriers 70
1.6.5 Ecological Recovery 70
1.6.6 Remediation Objectives 71
1.7 A Closer Look into Risk Assessment 72
1.7.1 Types of Risk Assessment 72
1.7.1.1 Purpose 72
1.7.1.2 Site-Specific Risk Assessment 72
1.7.1.3 Potential Risk Assessment 73
1.7.2 Soil Quality Standards 73
1.7.3 Measurements 75
1.7.4 Laboratory Data Versus Field Data 77
1.7.5 Expert Judgement 78
1.7.6 Essential Metals 79
1.7.7 Background Concentrations 79
1.7.8 Spatial Scale 81
1.7.9 Time Domain 82
1.7.10 Costs of Soil Contamination 83
1.7.11 Cost-Benefit Analyses 84
1.7.12 Integration of Human Health and Ecological Risk Assessment 84
1.7.13 Harmonisation of Risk Assessment Tools 85
1.7.14 Brownfields 86
1.7.15 Risk Perception and Risk Communication 87
1.8 Approaches Towards Contaminated Site Assessment and Management 89
1.8.1 Evolution 89
1.8.2 Multifunctionality 89
1.8.3 Fitness-for-Use 90
1.8.4 A More Pragmatic Approach 91
1.8.4.1 Mentality Change 91
1.8.4.2 Natural Attenuation 91
1.8.5 Market-Oriented Approach to Site Development 92
1.8.6 Integrated Approaches 93
1.8.6.1 Interdepartmental 93
1.8.6.2 Spatial Planning 93
1.8.6.3 Chemical, Physical and Biological Soil Quality Assessment 94
1.8.6.4 Environmental, Socio-Cultural and Economic Assessment 94
1.8.6.5 Life Cycle Assessment 94
1.8.7 Technical Approaches 95
1.8.7.1 Risk Assessment Methodologies 95
1.8.7.2 Conceptual Model 96
1.8.7.3 Tiered Approach 97
1.8.7.4 Weight of Evidence 98
1.8.7.5 Decision Support Systems 98
1.9 Sustainability 99
1.10 Actors Involved 100
1.10.1 Decision-Makers and Regulators 100
1.10.2 Scientists 102
1.10.3 Decision-Makers Versus Scientists 102
1.10.4 The Risk Assessor 103
1.10.5 Project Managers 104
1.10.6 Major International Institutions 105
1.11 Scope of the Book 107
References 108
2 Characteristics of Natural and Urban Soils 115
2.1 Soils of Contaminated Sites 116
2.1.1 Natural and Anthropogenic Soils 116
2.1.2 Imported Filling Materials 120
2.2 Inherited Geochemistry 121
2.3 Contaminant Behaviour in Soils 129
2.3.1 Chemical Affinities and Solubilities 129
2.3.1.1 Acids and Bases 130
2.3.1.2 Water-Immiscible Contaminants 130
2.3.1.3 Metals and Metalloids -- Trace Elements 131
2.3.1.4 Salts and Bases of Metal Alkaloids and Boron 131
2.3.1.5 Nitrogen and Phosphorus 133
2.3.1.6 Contaminants from Hospital Effluents and Sludges Discharged on Soil 134
2.3.2 Adsorptive Behaviour and Specific Surface Areas 137
2.4 Contamination Potential 138
2.4.1 Soils of Deposited Material and Former Industrial Sites 139
2.4.2 Additional Sources of Contamination 142
2.5 Chemical Characteristics with Reference to Contaminated Sites 145
2.6 Physical Characteristics with Reference to Contaminated Sites 148
2.7 Case Studies 150
2.7.1 The Soil as a Chromatogram -- Barium 150
2.7.2 Arsenic in Weathered Rock at the New Victorian Museum, Melbourne 153
2.7.3 Chromium in Soils 154
2.7.4 Vanadium in Soils 156
References 157
Part II Site Investigation 161
3 A Practical Approach for Site Investigation 162
3.1 Introduction 163
3.2 Not an Easy Task 163
3.3 Objectives for the Investigation of Soil Quality 164
3.4 Technical Goals 165
3.5 Three Investigation Phases 166
3.6 Preliminary Investigation 168
3.7 Exploratory Investigation 175
3.8 Main Investigation 181
3.9 Sampling Patterns 183
3.10 Sampling Techniques 184
Literature 185
4 Statistical Sampling Strategies for Survey of Soil Contamination 187
4.1 Introduction 188
4.2 Estimating (Parameters of) the Spatial Cumulative Distribution Function 189
4.2.1 Sampling Designs 190
4.2.1.1 Simple Random Sampling 191
4.2.1.2 Stratified Simple Random Sampling 191
4.2.1.3 Random Grid Sampling 194
4.2.1.4 Advanced Sampling Designs 195
4.2.2 Estimation 197
4.2.2.1 Spatial Mean 197
4.2.2.2 Areal Fraction with Concentrations Exceeding Threshold Concentration 200
4.2.2.3 Spatial Cumulative Distribution Function 201
4.2.2.4 Median and Other Percentiles 202
4.2.3 Using Ancillary Information in Estimation 203
4.2.3.1 Post-Stratification Estimator 203
4.2.3.2 Regression-Estimator 203
4.2.4 Composite Sampling 204
4.2.5 Required Number of Sampling Locations 205
4.2.5.1 Constraint on Sampling Variance or Coefficient of Variation 205
4.2.5.2 Constraint on Probability of Error 206
4.2.5.3 Constraints on Error Rates in Testing of a Hypothesis 207
4.3 Estimating Mean Concentrations for Delineated Blocks 207
4.3.1 Design-Based Approach 208
4.3.1.1 Using Data from Outside the Block 209
4.3.2 Model-Based Approach 210
4.3.3 Required Number of Sampling Locations 210
4.3.3.1 Bayesian Data-Worth Analysis 212
4.4 Mapping Concentrations at Point Locations 212
4.4.1 Sampling Patterns 213
4.4.1.1 Purposive Grid Sampling 213
4.4.1.2 Spatial Coverage and Spatial Infill Sampling 213
4.4.1.3 Geostatistical Sampling 215
4.4.1.4 Supplementary Sample for Estimating the Variogram 218
4.4.2 Spatial Interpolation 219
4.4.3 Required Number of Sampling Locations 221
4.5 Detecting and Delineating Hot Spots 221
4.5.1 Detecting Hot Spots 222
4.5.1.1 Adding Sampling Locations to the Grid 223
4.5.2 Delineating Hot Spots 224
4.5.2.1 Phased Sampling 224
4.5.2.2 Composite Sampling 224
References 227
Part III Human Health Aspects 229
5 Human Health Risk Assessment 230
5.1 Introduction 231
5.1.1 Threat to Human Health 231
5.1.2 Public Perception 232
5.2 Principles of Human Health Risk Assessment 233
5.2.1 Problem Definition 233
5.2.2 Risk Characterisation 233
5.2.3 Communication 234
5.3 Exposure Assessment 234
5.3.1 Definition 234
5.3.2 Biomonitoring 235
5.3.3 Exposure Calculations 238
5.3.3.1 Exposure Models 238
5.3.3.2 Contaminant Distribution 239
5.3.3.3 Contaminant Transfer 240
5.3.3.4 Major Exposure Pathways 240
5.3.3.5 Other Exposure Pathways 244
5.3.3.6 Overview Exposure Pathways 245
5.3.3.7 Exposure Scenarios 245
5.3.3.8 Input Parameters 247
5.3.3.9 Reliability 248
5.3.3.10 Measurements in Contact Media 249
5.3.3.11 Good Exposure Assessment Practice 251
5.4 Hazard Assessment 252
5.4.1 Contaminants in the Human Body 252
5.4.2 Threshold and Non-Threshold Effects 253
5.4.3 Toxicological Reference Value for Threshold Contaminants 254
5.4.3.1 Principles 254
5.4.3.2 Assessment Factors 256
5.4.4 Toxicological Reference Values for Non-Threshold Contaminants 258
5.4.5 Reliability 259
5.5 Risk Characterisation 260
5.5.1 Site-Specific Risk Assessment 260
5.5.2 Soil Quality Standards 261
5.5.3 Relevant Time Span 263
5.5.4 Background Exposure 265
5.5.5 Combined Exposure 267
5.6 A Closer Look at Human Health Risk Assessment 268
5.6.1 Significance of Exceeding Toxicological Reference Values 268
5.6.2 Odour Nuisance and Taste Problems 269
5.6.3 Physiologically-Based PharmacoKinetic Modelling 270
5.6.4 Probabilistic Human Health Risk Assessment 271
5.6.5 Reliability 271
5.6.6 Ethical Issues 272
5.6.6.1 Human Beings 272
5.6.6.2 Animals 273
5.6.7 Relationship Scientist and Decision-Makers 273
5.6.8 Site-Specific Risk Assessment 273
References 275
6 Exposure Through Soil and Dust Ingestion 281
6.1 Introduction 282
6.1.1 General Aspects 282
6.1.2 Defining Soil and Dust 282
6.1.3 Calculating Exposure Through Ingestion of Soil and Dust 284
6.2 Quantification of Soil and Dust Ingestion Rates 285
6.2.1 Tracer Element Methodology 285
6.2.2 Alternative Approaches for Estimating Soil and Dust Ingestion 294
6.2.3 Soil and Dust Ingestion Rates for Children and Adults 296
6.2.4 Soil Ingestion Rates Recommended by International Regulatory Bodies 301
6.2.5 Representativeness of Soil and Dust Ingestion Rates 301
6.3 Conclusions 303
References 304
7 Oral Bioavailability 307
7.1 Theory of Availability 308
7.1.1 Oral Bioavailability 309
7.1.1.1 Accessibility 310
7.1.1.2 Absorption 311
7.1.1.3 Metabolisation in the Liver 315
7.1.2 Relative Bioavailability Factor 316
7.1.3 Validation of Bioaccessibility Tests 319
7.2 Influence of Soil Properties on Oral Bioaccessibility 320
7.2.1 pH 320
7.2.2 Soil Organic Matter 320
7.2.3 Mineral Constituents 321
7.2.4 Solid Phase Speciation and Bioaccessibility 325
7.2.5 Soil Ageing 326
7.2.6 Statistical Modelling of Bioaccessibility 326
7.2.7 Soil Sampling and Preparation for Bioaccessibility/Bioavailability Measurements 327
7.3 Considerations for the Potential Use of Site Specific Bioaccessibility Measurements 328
7.4 Examples of Bioaccessibility Studies 329
7.4.1 Geogenic Sources 330
7.4.2 Anthropogenic Influences 331
7.5 The BARGE Network 332
7.5.1 Inter-Laboratory Studies 333
7.5.2 Utilization of Bioaccessibility Data Across Europe 335
References 336
8 Uptake of Metals from Soil into Vegetables 345
8.1 Introduction 346
8.2 Metal and Metalloid Chemistry in Soil 346
8.2.1 Cationic Metals 347
8.2.2 Anionic Metals/Metalloids 349
8.2.3 Effects of Soil Redox 350
8.3 Plant Acquisition of Metals and Metalloids from Soil 351
8.3.1 Root Uptake Pathway 351
8.3.1.1 Speciation and Ion Uptake Rate 351
8.3.1.2 Rhizosphere Processes 354
8.3.1.3 Ion Competition Effects for Metal and Metalloid Uptake 355
8.3.1.4 Translocation of Metals and Metalloids in the Plant 357
8.3.2 Foliar Uptake of Metals 364
8.4 Integrating Factors Affecting Metal/Metalloid Accumulation by Vegetables 368
8.4.1 Type of Metal/Metalloid 368
8.4.2 Vegetable Species 369
8.4.3 Vegetable Cultivar 370
8.4.4 Soil Physical/Chemical Properties 370
8.4.4.1 pH 372
8.4.4.2 Soil Texture and Depth of Contamination 372
8.4.4.3 Soil Organic Matter 372
8.4.4.4 Salinity 373
8.4.4.5 Redox Potential 373
8.4.4.6 Nutrient Status 373
8.5 Models to Predict Contaminant Uptake by, or Toxicity to, Vegetables 374
8.5.1 Model Characteristics 375
8.5.1.1 Constant Heavy Metal Content for Each Plant Species 375
8.5.1.2 Soil-Plant Transfer Models 375
8.5.1.3 FIAM 377
8.5.1.4 Biotic Ligand Model 378
8.5.1.5 Physiological Models 378
8.5.1.6 Barber-Cushman Mechanistic Model 379
8.5.2 Application of Models 379
References 380
9 Uptake of Organic Contaminants from Soil into Vegetables and Fruits 388
9.1 Introduction 390
9.2 Uptake and Transport Processes 390
9.3 Empirical Methods for Estimating Uptake of Contaminants into Plants 391
9.3.1 Bioconcentration Factors 391
9.3.2 Regression Equations 393
9.3.3 Root Concentration Factor 393
9.3.4 Partition Coefficients for Stem and Leaves 395
9.3.5 Translocation from Roots into Stem and Leaves 396
9.4 Mechanistic Models for Estimating Uptake of Contaminants into Plants 396
9.4.1 Processes to Include in a Plant Uptake Model 397
9.4.2 Mass Balance for a Dynamic Plant Uptake Model 397
9.4.3 Steady-State Solution for the Root and Leaf Model 400
9.4.4 General Solutions for a Cascade Model 400
9.4.5 Input Data for the Root and Leaf Model 403
9.5 Influence of Contaminant-Specific Parameters 403
9.5.1 KOW on Accumulation in Roots and Potatoes 403
9.5.2 KOW and KAW on Accumulation of Contaminants in Leaves 404
9.5.3 Uptake from Air Versus Uptake from Soil 406
9.5.4 Dissipation from Soil 407
9.5.5 Impact of pKa and pH on Uptake of Ionisable Contaminants 408
9.6 Influence of Plant-Specific Parameters 409
9.6.1 Crop Types and Uptake Pathways 410
9.6.2 Physiological Parameters 410
9.6.3 Plant Morphology and Collection Efficiency for Particles 411
9.6.4 Variation of Partition Coefficients 413
9.6.5 Permeability 413
9.6.6 Particle Deposition 414
9.6.7 Metabolism in Plants 414
9.7 Environmental Variables 416
9.7.1 Climate 416
9.7.2 Bioavailability 417
9.7.3 Soil pH 417
9.7.4 Uncertainties in Predictions 417
9.8 Uptake Potential of Specific Substance Classes 418
9.8.1 Chlorinated Solvents (PCE, TCE and Others) 418
9.8.2 Gasoline Contaminants 419
9.8.3 Heavy Petroleum Products 419
9.8.4 Polycyclic Aromatic Hydrocarbons 419
9.8.5 Persistent Organic Pollutants POPs 419
9.8.6 Explosives 419
9.8.7 Phenols 420
9.8.8 Cyanides 420
9.9 Monitoring of Contaminants in Soils and Shallow Aquifers with Vegetation 420
9.10 Conclusions 422
References 422
10 Vapor Intrusion 428
10.1 Introduction 429
10.2 Conceptual Models 429
10.2.1 Vapor Source 430
10.2.2 Pathway 431
10.2.3 Receptor 434
10.2.4 Vapor Intrusion Assessment Approach 435
10.3 Fate and Transport Processes 437
10.3.1 Phase Partitioning 438
10.3.2 Biodegradation 440
10.3.3 Soil Gas Advection 441
10.3.4 Mixing Inside the Building 442
10.4 Mathematical Modeling 442
10.4.1 Mathematical Model Formulation 443
10.4.1.1 Phase Partitioning 443
10.4.1.2 Transport Through a Porous Media 445
10.4.1.3 Vapor Intrusion into Buildings 446
10.4.1.4 Attenuation Factors 446
10.4.2 Available Vapor Intrusion Models 447
10.4.2.1 Diffusion Models 449
10.4.2.2 Diffusion and Convection Models 449
10.4.2.3 Dilution Factor Models 451
10.4.2.4 Numerical Models 452
10.5 Sampling and Analysis 452
10.5.1 Sampling and Analysis Challenges 452
10.5.2 Pros and Cons of Sampling for Various Soil Compartments 453
10.5.2.1 Shallow Groundwater 453
10.5.2.2 Sub-Slab Soil Gas 455
10.5.2.3 Soil Gas Samples Collected Adjacent to a Building 456
10.5.2.4 Indoor Air 458
10.5.2.5 Soil Sampling 460
10.5.3 Analytical Methods 460
10.5.4 Field Screening Considerations 461
10.5.4.1 Photoionization Detectors (PIDs) and Flame Ionization Detectors (FIDs) for VOC Screening 461
10.5.4.2 Landfill Gas Meters for Oxygen, Carbon Dioxide and Methane Concentrations 462
10.5.4.3 Hexafluoride and Helium Meters 462
10.5.4.4 Mobile Laboratories 462
10.6 Mitigation 463
10.6.1 Methods/Technologies for Existing Buildings 463
10.6.1.1 Sub-Slab De-Pressurization 463
10.6.1.2 Soil Vacuum Extraction 465
10.6.1.3 Building Pressurization 465
10.6.1.4 Sealing Cracks, Sumps, Sewers, and Other Potential Conduits 465
10.6.1.5 Air Filtration 466
10.6.2 Methods/Technologies for Future Buildings 466
10.6.2.1 Intrinsically Safe Building Design 466
10.6.2.2 Vapor Barriers and Ventilation Layers 466
References 467
11 Human Exposure Pathways 473
11.1 Introduction 475
11.1.1 Relevant Pathways 475
11.1.2 Calculating Exposure 475
11.2 Exposure Through Consumption of Vegetables 476
11.2.1 Significance 476
11.2.2 Conceptual Model 477
11.2.2.1 Principles 477
11.2.2.2 Differences Between Vegetable Types 478
11.2.2.3 Representative Concentration in Vegetables 479
11.2.3 Mathematical Equations 479
11.2.3.1 Principles 479
11.2.3.2 Metals 480
11.2.4 Input Parameters 481
11.2.4.1 Consumption of Vegetables 481
11.2.4.2 Fraction of Vegetables that is Home-Grown 482
11.2.4.3 Correction for Relative Bioavailability in the Human Body 483
11.2.5 Site-Specific Risk Assessment of Exposure Though Vegetables Consumption 483
11.2.6 Further Considerations 484
11.2.7 Reliability and Limitations 484
11.3 Exposure Through Consumption of Animal Products 484
11.3.1 Conceptual Model 485
11.3.1.1 Prediction of Contaminant Concentrations in Animal Tissues 485
11.3.1.2 Calculation of Human Exposure 486
11.3.2 Mathematical Equations 487
11.3.2.1 Calculation of Animal Intake 487
11.3.2.2 Calculation of the Concentration of Contaminant in Animal Products 487
11.3.2.3 Calculation of Human Exposure 493
11.3.3 Input Parameters 493
11.3.3.1 Intake by Animals 493
11.3.3.2 Parameters for Estimating the Concentration in Animal Tissues 495
11.3.3.3 Human Consumption of Products 499
11.3.4 Reliability and Limitations 499
11.4 Exposure Via Domestic Water 501
11.4.1 Conceptual Model 502
11.4.2 Mathematical Equations 502
11.4.2.1 Consumption of Drinking Water 502
11.4.2.2 Inhalation of Volatilised Domestic Water 503
11.4.2.3 Dermal Contact During Showering 503
11.4.3 Input Parameters 504
11.4.3.1 Consumption of Drinking Water 504
11.4.3.2 Data for Volatilisation and Dermal Pathways 505
11.4.4 Reliability and Limitations 505
11.4.5 Verification and Validation 506
11.5 Exposure Through Inhalation of Vapours Outdoors 506
11.5.1 Conceptual Model 507
11.5.2 Description of Models 507
11.5.2.1 Calculation of Outdoor Air Concentration 508
11.5.2.2 Calculation of Exposure 511
11.5.3 Input Parameters 512
11.5.3.1 Diffusivities 512
11.5.3.2 Meteorological Parameters 513
11.5.3.3 Receptor Height 513
11.5.4 Influence of Physical Properties 514
11.5.5 Influence of Human Behaviour 514
11.5.6 Reliability and Limitations 514
11.5.7 Verification and Validation 515
11.6 Exposure Through Inhalation of Dust 515
11.6.1 Conceptual Model 516
11.6.2 Mathematical Equations 517
11.6.2.1 Concentrations of Contaminants in Dust in Air 517
11.6.2.2 Derivation of the Particulate Emission Factor 517
11.6.2.3 Calculation of Exposure 518
11.6.3 Input Parameters 519
11.6.3.1 Dust Concentrations in Air 519
11.6.3.2 Fraction of Dust from the Contaminated Site 520
11.6.3.3 Concentration of Dust in Indoor Air 520
11.6.3.4 Fraction of Dust Which is Respirable 521
11.6.3.5 Contamination in Dust 521
11.6.4 Inhaled Volume 521
11.6.5 Influence of Soil Properties 522
11.6.6 Influence of Human Behaviour 523
11.6.7 Reliability and Limitations 523
11.7 Exposure Through Dermal Uptake 524
11.7.1 Significance 524
11.7.2 Conceptual Model 524
11.7.3 Mathematical Equations 525
11.7.4 Input Parameters 526
11.7.4.1 Dermal Absorption Fractions 526
11.7.4.2 Soil Adherence Factors 527
11.7.4.3 Skin Surface Area 528
11.7.5 Reliability and Limitations 529
References 529
12 Hazard Assessment and Contaminated Sites 534
12.1 Hazard Assessment and Contaminated Sites 536
12.2 Hazard Identification 537
12.3 Hazard Identification-Toxicology 538
12.3.1 Toxicity Testing – Major In Vivo Study Types 539
12.3.2 Important Issues in Toxicity Testing and Assessment 540
12.3.2.1 Study Protocol and Design 540
12.3.3 Assessment of the Quality of the Data Characterising the Hazard 542
12.3.4 Analysis and Evaluation of Toxicity Studies 543
12.3.5 Analysis and Evaluation of Major Study Parameters 543
12.3.5.1 Mortality/ Survival 544
12.3.5.2 Clinical Observations 545
12.3.5.3 Body Weight Changes 545
12.3.5.4 Haematological, Clinical Chemistry, and Urinary Measurements 545
12.3.5.5 Absolute and Relative Organ Weights 546
12.3.5.6 Post Mortem Observation 546
12.3.5.7 Analysis and Evaluation of Study Parameters in Toxicity Studies 546
12.3.5.8 Interspecies Scaling of Doses 548
12.3.5.9 Route-to-Route Scaling 548
12.3.5.10 Other Factors in Scaling of Doses 549
12.3.5.11 Extrapolating Occupational Data to the General Public 549
12.3.5.12 Statistical Tests 549
12.3.5.13 Completion of Hazard Analysis 550
12.3.6 Evaluation of the Weight-of-Evidence and Consideration of the Toxicology Database In Toto 551
12.3.7 Methods for the Hazard Identification of Carcinogens 552
12.3.8 The Hazard Identification Report 553
12.4 Hazard Identification-Epidemiology 553
12.4.1 Introduction 553
12.4.2 Bias and Confounding: Key Concepts in Environmental Epidemiology 554
12.4.3 Types of Epidemiological Study – An Overview 555
12.4.3.1 Observational Studies 557
12.4.4 Assessing the Relationship Between a Possible Cause and an Outcome 557
12.4.5 The Strengths and Limitations of Observational Epidemiology Versus Experimental Toxicology 560
12.4.5.1 Hazard Identification 561
12.4.6 Undertaking Health Studies 562
12.5 Dose-Response Assessment 563
12.5.1 Introduction 563
12.5.2 Methodologies 564
12.5.3 Threshold Approaches 565
12.5.4 Non-Threshold Approaches 566
12.5.5 Threshold Versus Non-Threshold Approaches 567
12.5.6 Mechanistically-Derived Models 569
12.5.7 Benchmark Dose Approach 569
12.5.8 Inter- and Intra-Species Considerations 571
12.5.9 Mixtures 571
12.5.10 Checklist for Toxicological Appraisals 572
12.5.10.1 Hazard Identification 572
12.5.10.2 Characterisation of Dose-Response 574
12.5.11 Uncertainty and Variability in Hazard Assessment 575
12.5.12 Sources of Toxicological and Tolerable Intake Data 575
References 583
Part IV Ecological Aspects 588
13 Introduction to Ecological Risk Assessment 589
13.1 Introduction 591
13.1.1 Vital Soil 591
13.1.2 Terminology, Ranking and Classification 592
13.1.3 Public Perception 594
13.2 Soil Biology 595
13.2.1 Soil Life 595
13.2.2 Classification of Organisms 595
13.2.2.1 Types of Classification 595
13.2.2.2 Fungi 597
13.2.2.3 Bacteria 597
13.3 Organisms in the Groundwater 598
13.4 Significance of the Soil Ecosystem 598
13.4.1 The Value of Soil Biology 598
13.4.2 Biodiversity 599
13.4.3 Ecosystem Services 601
13.4.3.1 The Significance of Ecosystem Services 601
13.4.3.2 Soil Structuring 602
13.4.3.3 Humus Formation 603
13.4.3.4 Element Cycling and Nutrient Supply 603
13.4.3.5 Cleaning Function 605
13.4.3.6 Disease Control 605
13.4.3.7 Energy-Related Ecosystem Services 606
13.4.4 Above-Ground Biology 607
13.4.5 Agriculture 607
13.5 Ecological Risk Assessment 608
13.5.1 Principles 608
13.5.2 Risk Characterisation 609
13.5.3 Characteristics of Exposure 610
13.5.3.1 Oral and Dermal Exposure 610
13.5.3.2 Bioavailability 611
13.5.4 Endpoints 613
13.5.5 Other Stress Factors 615
13.5.5.1 Ecological Impact 615
13.5.5.2 Soil Type, Properties and Structure 615
13.5.5.3 Food Supply 616
13.5.5.4 Sealing and Compaction 616
13.5.6 Political Awareness 618
13.6 Ecological Risk Assessment in Practice 620
13.6.1 Soil Quality Assessment 620
13.6.2 Soil Quality Standards 621
13.6.3 Site-Specific Risk Assessment 622
13.7 A Closer Look into Ecological Risk Assessment 622
13.7.1 Resilience and Recovery 622
13.7.2 Adaptation 623
13.7.3 Land Use 624
13.7.4 Secondary Poisoning and Food Web Approach 625
13.7.5 Wildlife Protection 626
13.7.6 Scale and Contaminant Pattern 627
13.7.7 Spatial Planning 628
13.8 Sustainability 628
13.8.1 Political Significance 628
13.8.2 The Benefits of Sustainability 629
13.8.3 Agriculture 630
13.8.4 Improving Sustainability 631
13.9 Monitoring the Soil Ecosystem Quality 631
13.9.1 Indicators 631
13.9.2 Significance of Monitoring the Soil Ecosystem Quality 632
13.9.3 Possibilities for Monitoring 632
13.9.4 Biological Classification Systems 633
13.9.4.1 Biological Indicator for Soil Quality (BISQ) 634
References 635
14 Ecological Risk Assessment of Diffuse and Local Soil Contamination Using Species Sensitivity Distributions 641
14.1 Aims of this Chapter and Readers Guide 643
14.2 Soil Protection Motives and Impacts of Non-Protection 644
14.2.1 Protecting Living Soil -- Motives 644
14.2.2 Protecting Living Soil -- Handling Diverse Stressor Responses 645
14.2.3 Field Effects of Soil Contamination in a Pollution Gradient 645
14.2.4 From Field Effects to SSD Modeling 647
14.3 SSD Modeling and Practical Needs 648
14.3.1 Basics of Distribution Modeling as an Assessment Approach 648
14.3.2 Two Practical Needs and Two Useful SSD Applications 650
14.4 Theoretical Basis of SSD Modeling 651
14.4.1 Why SSDs Fit the Risk Assessment Paradigm and Practices 651
14.4.1.1 Hazardous Concentrations 652
14.4.1.2 Hazard Potential or Toxic Pressure 653
14.4.2 Extrapolation: From Probably to Potentially Affected Fraction 653
14.4.3 The Conceptual Interpretation of SSDs: PAF and PES 655
14.4.4 Discussions of SSDs, Assumptions and Interpretation 655
14.5 Validity of SSD-Based Output in Ecological Risk Assessment 657
14.6 SSDs and Ranking of Contaminants or Sites 660
14.6.1 SSDs and Ranking Contaminants 660
14.6.2 SSDs and Ranking Sites 662
14.6.3 SSDs, Rankings and Weighting in SSDs 662
14.7 SSDs and Cost Effectiveness of Environmental Management 662
14.8 Practical Basis of SSD Modeling 663
14.8.1 Ingredient 1: The Input Data 663
14.8.1.1 Raw Input Data 663
14.8.1.2 Pre-Treatment of Input Data 664
14.8.1.3 Example Data Bases 665
14.8.2 Ingredient 2: The Statistical Approach 665
14.8.2.1 Options for Model Choice 665
14.8.2.2 Selecting a Model 665
14.8.2.3 Software 666
14.9 Statistical Issues in SSD Modeling and Interpretation 666
14.9.1 Minimum Data Numbers and (Mis)Fit 666
14.9.2 Presenting Confidence Intervals 667
14.9.3 Interpreting Statistical Confidence Intervals 668
14.9.4 Options to Handle Small Sets of Input Data 670
14.9.5 Handling the Possible Causes of Misfit 670
14.10 Other Issues in SSD Modeling and Interpretation 671
14.10.1 Comparison of Hazard Indices and PAF 671
14.10.2 Dealing with Natural Background Concentrations 672
14.10.3 The Influence of Soil Type and Soil Properties 673
14.10.4 When Soil Concentrations are Very High 673
14.10.5 When Soil Concentrations in an Area Vary 675
14.10.6 When There is a Mixture of Contaminants 675
14.10.7 When the Environmental Problem is Refined: Tiers for SSDs 678
14.11 Weight-of-Evidence and Tiered Use of SSD Output 679
14.12 Key Strengths and Limitations of SSDs 681
14.13 Practices of SSD Use 682
14.13.1 Practical Approaches in this Chapter 682
14.13.2 Criterion Risk Assessments, the Oldest Use of SSDs 683
14.13.3 The Dilemma of Conservative Quality Standards 684
14.13.4 From Criterion Risk Assessment to Conventional Risk Assessment 685
14.13.5 Conventional Risk Assessments with SSDs: A Versatile Approach 685
14.14 Examples of Conventional Risk Assessment of Soil Contamination with SSDs 687
14.14.1 Policy Framework Backgrounds -- The Netherlands 687
14.14.2 GIS Mapping of Soil Quality 688
14.14.2.1 Problem Setting 688
14.14.2.2 Approach 689
14.14.2.3 Conventional Risk Assessment Results 689
14.14.2.4 Management Assessment 690
14.14.2.5 Outcome Assessment 691
14.14.3 Handling Slightly Contaminated Sediments 691
14.14.3.1 Problem Setting 691
14.14.3.2 Approach 691
14.14.3.3 Conventional Risk Assessment Results 692
14.14.3.4 Management Assessment 693
14.14.3.5 Outcome Assessment 694
14.14.4 Soil Quality Classes and Local Risks to Manage Local Soils 694
14.14.4.1 Problem Setting 694
14.14.4.2 Approach 695
14.14.4.3 Conventional Risk Assessment Results 695
14.14.4.4 Management Assessment and Outcome Assessment 696
14.14.5 GIS-Mapping of Remediation Sites and Monitoring of Remediation Policies 697
14.14.5.1 Problem Setting 697
14.14.5.2 Approach 697
14.14.5.3 Conventional Risk Assessment Results 697
14.14.5.4 Management Assessment 698
14.14.5.5 Outcome Assessment 699
14.14.6 A Contrasting Approach, the U.S. Superfund 699
14.15 Reflections and Conclusions 700
References 702
15 Site-Specific Ecological Risk Assessment 708
15.1 The Soil Ecosystem and Site-Specific Risk Assessment 709
15.1.1 Appreciation of the Ecosystem at Contaminated Sites 711
15.1.2 Stakeholder Involvement 711
15.2 Working Hypotheses, Definition of Conceptual Models and ERA Frameworks 713
15.3 Weight of Evidence and the Triad Approach 715
15.4 Practical Issues for Adoption of the Triad Approach 716
15.4.1 Uncertainty 716
15.4.2 Selection of Assessment Tools 717
15.4.3 Quantification and Scaling 718
15.4.4 Weighting of Effect Values 721
15.4.5 Reference Information 722
15.5 Integration of Lines of Evidence and Final Results 723
15.6 Embedding ERA in Formal Assessment Frameworks 725
15.6.1 An Example of a General Framework from the Netherlands 725
15.6.2 Examples of the Lines of Evidence in the Dutch Remediation Criterion 726
Box 15.1 Chemical characterization of effects 727
Toxicity Characterization with Bioassays 728
Approximation of Effects from Ecological Field Monitoring 729
15.6.3 Outline of ERA in Other Countries 730
15.7 Outlook 731
References 732
16 Bioavalibility in Soils 736
16.1 Introduction 737
16.2 What is Bioavailability? 738
16.3 Impact of Soil Properties on Bioavailability 739
16.3.1 Metals and Metalloids 740
16.3.2 Organic Contaminants 742
16.4 Measurement of Bioavailability 747
16.4.1 Extractions for Determining Bioavailability 747
16.4.1.1 Metals and Metalloids 748
16.4.1.2 Organic Contaminants 750
16.4.2 Modelling the Bioavailability of Contaminants 752
16.4.2.1 Metals and Metaloids 752
16.4.2.2 Organic Contaminants 754
16.5 Concluding Remarks 756
References 756
Part V Groundwater-Related Aspects 762
17 Groundwater-Related Risk Assessment 763
17.1 Introduction 764
17.1.1 Subsurface Water 764
17.1.2 Terminology 767
17.1.3 Groundwater Quality 768
17.1.3.1 Natural Impact on Groundwater 768
17.1.3.2 Anthropogenic Impact on Groundwater 768
17.1.3.3 Impact of a Revised Quantitative Groundwater Regime 770
17.1.4 Scope of the ''Groundwater-Related Aspects (Part V)'' 770
17.2 Groundwater as Protection Target 772
17.2.1 Human Use 772
17.2.2 Ecological Habitat Function 774
17.2.3 Intrinsic Value 774
17.2.4 Sustainability 775
17.2.5 Appreciation 776
17.2.5.1 General Public 776
17.2.5.2 The Groundwater Ecosystem 778
17.2.5.3 Political 778
17.3 Groundwater as Contaminant Pathway 779
17.3.1 Source-Pathway-Receptor Approach 779
17.3.2 Transport Characteristics 780
17.3.2.1 General Transport Pattern 780
17.3.2.2 Impact of Heterogeneous Soils or Aquifer 781
17.3.2.3 Impact of Surface Water Bodies and Anthropogenic Subsurface Processes and Structures 781
17.4 Calculating Contaminant Transport 782
17.4.1 Conceptual Models 782
17.4.2 Mathematical Models 783
17.4.2.1 Role and Principles 783
17.4.2.2 Numerical Models 784
17.4.3 Reliability of Model Calculations 785
17.4.3.1 Uncertainties 785
17.4.3.2 Dealing with Uncertainties 788
17.4.4 Good Modelling Practice 788
17.5 Risk Management 790
17.5.1 Scope 790
17.5.2 Natural Attenuation 790
17.5.3 Regional Approaches 791
17.6 Sampling and Monitoring 791
17.6.1 Purpose 791
17.6.2 Groundwater Concentration Pattern 791
17.6.3 Lysimeters and Column Experiments 792
17.7 A Closer look into Groundwater-Related Risk Assessment 793
17.7.1 Impact of Climate Change 793
17.7.2 Mingling Groundwater Plumes 794
17.7.3 Risk Perception and Communication 795
17.7.4 European Water Framework Directive and Groundwater Daughter Directive 795
17.8 Site-Specific Assessment of Exposure Through Contaminant Transport 796
References 796
18 Leaching of Contaminants to Groundwater 800
18.1 Introduction 801
18.2 Variably Saturated Water Flow 803
18.2.1 Water Retention and Hydraulic Conductivity 804
18.2.1.1 Water Retention 804
18.2.1.2 Hydraulic Conductivity 808
18.2.2 Mass Balance Equation 810
18.2.3 Preferential Flow 812
18.2.4 The Evapotranspiration Process 812
18.2.5 Penman-Monteith Equation for Evapotranspiration 814
18.2.6 FAO56 Reference Evapotranspiration 815
18.2.7 Root Water Uptake 816
18.2.8 Application: Numerical Simulations of Variably Saturated Flow in a Soil Profile 817
18.2.8.1 Single-Layer Soil 817
18.2.8.2 Two-Layer Soil 820
18.3 Contaminant Transport 821
18.3.1 Transport Processes 822
18.3.1.1 Diffusion 823
18.3.1.2 Dispersion 824
18.3.1.3 Advection 825
18.3.2 Advection-Dispersion Equations 826
18.3.2.1 Transport Equations 826
18.3.2.2 Linear and Non-Linear Sorption 827
18.3.2.3 Volatilization 827
18.3.2.4 Initial and Boundary Conditions 829
18.3.3 Nonequilibrium Transport 830
18.3.3.1 Physical Nonequilibrium 830
18.3.3.2 Chemical Nonequilibrium 832
18.3.3.3 Colloid-Facilitated Solute Transport 833
18.3.4 Stochastic Models 834
18.3.4.1 Flow and Transport Parameter Heterogeneity 834
18.3.4.2 Stream Tube Models 838
18.3.5 Multicomponent Reactive Solute Transport 839
18.3.6 Multiphase Flow and Transport 840
18.4 Analytical Models 841
18.4.1 Analytical Approaches 841
18.4.2 Existing Models 841
18.4.2.1 One-Dimensional Models 841
18.4.2.2 Multi-Dimensional Models 842
18.5 Numerical Models 842
18.5.1 Numerical Approaches 842
18.5.1.1 Finite Differences 843
18.5.1.2 Finite Elements 844
18.5.2 Existing Models 844
18.5.2.1 Single-Species Solute Transport Models 844
18.5.2.2 Biogeochemical Transport Models 847
18.6 Concluding Remarks 852
References 854
19 Contaminant Fate and Reactive Transport in Groundwater 864
19.1 Introduction 865
19.2 Basic Theory on Contaminant Transport 866
19.2.1 Contamination Sources and Plume Formation 867
19.2.2 Advection 869
19.2.3 Hydrodynamic Dispersion 869
19.2.4 Sorption 872
19.2.5 Biodegradation 874
19.3 Contaminant Transport Models 877
19.3.1 Governing Equations 878
19.3.2 Mathematical Models 879
19.3.3 Model Application 881
19.4 Reactive Transport Scenarios 882
19.5 Case Study: Transport of Ammonium from a Landfill 889
19.6 Summary and Conclusions 895
References 895
Part VI Risk Management 899
20 Sustainability and Remediation 900
20.1 Introduction 901
20.2 Concepts 902
20.2.1 Sustainability 902
20.2.1.1 Sustainability Appraisal in Overview 902
20.2.1.2 Using Indicators in Sustainability Appraisal 903
20.2.1.3 The Driver, Pressure, State, Impact and Response (DPSIR) Framework 907
20.2.2 Risk Management 908
20.2.2.1 Risk Management Principles 908
20.2.2.2 Institutional Controls 910
20.2.3 Sustainable Remediation 911
20.2.4 Frameworks 913
20.2.5 International Initiatives in Sustainable Remediation 919
20.2.6 Communicating Sustainability and Risk Management 921
20.3 Using Sustainability Appraisal in Remediation Option Appraisal 923
20.3.1 The Scope of Sustainability Appraisal as a Decision Support Process in Projects 924
20.3.1.1 Using an Indicator Hierarchy 925
20.3.1.2 Using Key Performance Indicators (KPIs) 927
20.3.1.3 Agreeing Sustainability Indicator Approaches for Remediation 927
20.3.2 Using Sustainability for Technology Promotion and for Corporate Reporting 928
20.3.2.1 Promotion of Remediation Technologies 928
20.3.2.2 Linkage to Corporate Reporting 928
20.3.3 Frameworks and Boundaries 929
20.3.4 Techniques and Tools and Their Applicability 932
20.3.4.1 Systems Using Scores, Rankings, Weightings, Including Multi-Criteria Analysis 932
Box 20.1 Multi-Criteria Analysis (MCA) 933
20.3.4.2 Best Available Technique (BAT) 934
20.3.4.3 Carbon Footprint (''Area'') 934
20.3.4.4 Carbon Balance (Flows) 935
20.3.4.5 Cost Benefit Analysis 935
20.3.4.6 Cost Effectiveness Analysis 937
20.3.4.7 Eco-Efficiency 937
20.3.4.8 Ecological Footprint 938
20.3.4.9 Energy Intensity/Efficiency 938
20.3.4.10 Risk Assessment 938
20.3.4.11 Environmental Impact Assessment/Strategic Environmental Assessment 939
20.3.4.12 Financial Risk Assessment 940
20.3.4.13 Industrial Ecology 940
20.3.4.14 Life Cycle Assessment 941
20.3.4.15 Quality of Life Capital Assessment 942
20.4 Applied Sustainable Remediation 942
20.5 Case Studies 945
20.5.1 Soil Redevelopment in the Volgermeerpolder, Amsterdam, the Netherlands 945
20.5.2 Wind Powered Passive Aeration Remediation Systems 946
20.5.3 Sustainable Reuse of Contaminated Sediments 948
20.5.4 The Use of the REC Method to Select a Remediation Strategy 948
20.5.5 ''Sanergy'' as a Sustainable Synergy of Remediation and Groundwater Energy 950
20.6 The Future Perspective of Sustainable Management of Contaminated Sites 952
20.6.1 A New Basis for Decision Making 952
20.6.2 Work in Progress 952
20.6.3 Technological Innovation by Combining State of the Art Techniques 953
20.6.4 Synergies: Go with the Flow 953
References 954
21 In Situ Remediation Technologies 960
21.1 Introduction 961
21.1.1 Background of In Situ Remediation 961
21.1.2 Scope 962
21.2 In Situ Remediation Technologies 963
21.2.1 Principles 963
21.2.1.1 Equilibrium Relations of Organic Contaminants in Soil 963
21.2.1.2 Limiting Environmental Factors 967
21.2.2 In Situ Technologies 972
21.2.2.1 Source Oriented In Situ Technologies 972
21.2.2.2 Path Oriented In Situ Technologies 975
21.2.2.3 Receptor Oriented In Situ Technologies 977
21.3 Integration of In Situ Technologies in Risk Management 978
21.3.1 Risk Management Concepts and Frameworks 978
21.3.2 Risk Management Application 980
21.3.3 Risk Management at Contaminated Megasites 981
21.3.3.1 Starting the IMS 981
21.3.3.2 Risk Assessment 981
21.3.3.3 Management Scenarios 983
21.3.3.4 Implementation 983
21.4 Outlook 984
References 985
22 Natural Attenuation 989
22.1 Introduction 990
22.1.1 Principles 990
22.1.2 History 991
22.1.3 Definition 992
22.1.4 Political and Practical Acceptance 993
22.2 Principles of Natural Attenuation 994
22.2.1 Plume Development and Transport Processes 994
22.2.2 Proving Natural Attenuation and Implementing Monitored Natural Attenuation 996
22.2.3 Methods to Prove Monitored Natural Attenuation 998
22.3 Natural Attenuation at Petroleum Hydrocarbon Contaminated Sites 1002
22.3.1 Characteristics of Petroleum Hydrocarbon Mixtures 1002
22.3.2 Natural Attenuation Potential and Challenges at Petroleum Hydrocarbon Contaminated Sites 1004
22.4 Natural Attenuation at Chlorinated Hydrocarbon Contaminated Sites 1006
22.4.1 Characteristics of Chlorinated Hydrocarbons 1006
22.4.2 Evaluation of Natural Attenuation Potential and Challenges at Chlorinated Hydrocarbon Contaminated Sites 1008
22.4.3 Enhanced Natural Attenuation 1010
22.5 Natural Attenuation at Tar Oil Contaminated Sites 1010
22.5.1 Introduction 1010
22.5.2 Characteristics of Tar Oil 1011
22.5.2.1 Tar Oil Components 1011
22.5.3 Natural Attenuation Potential of Tar Oil 1017
22.5.4 Summary 1018
22.6 Conclusions and Outlook 1019
References 1021
Part VII Frameworks 1025
23 Bringing Sustainable Management of Contaminated Sites into Practice The Role of Policy and Regulations 1026
23.1 Introduction 1027
23.2 The Development of an Environmental Policy for Soil in the European Union 1029
23.2.1 The Status of Soil and Soil Contamination 1029
23.2.1.1 Agricultural Areas 1030
23.2.1.2 Natural Areas 1030
23.2.1.3 Urban Areas and Infrastructures 1030
23.2.1.4 Sediments 1031
23.2.2 Prevention of Contamination and Management of Contaminated Sites 1032
23.3 Three Generations of National Contaminated Sites Management Policies 1034
23.3.1 Generation 1: Command and Control Regulations by National Authorities 1035
23.3.2 Generation 2: Flexibility in National Regulations, Room for Local Site Specific Decisions 1035
23.3.3 Generation 3: Regulations are Used to Create Opportunities and to Remove Barriers for Remediation by Private Parties 1036
23.4 Contaminated Site Networks and Network Debates 1036
23.4.1 Environment Versus Spatial Planning as a Driver for Remediating Contaminated Sites 1037
23.4.2 Generic Soil ''Numbers'' Versus Site Specific Risk Assessment 1038
23.4.3 Risk Management 1039
23.5 A Policy Makers View on Risk Assessment for Contaminated Sites 1040
23.5.1 A General Framework for Risk Assessment for Contaminated Sites 1041
23.5.2 Risk Assessment and Risk Management 1043
23.5.3 The Role of a Scientist in Risk Assessments 1045
23.5.3.1 Framing Uncertainty 1045
23.5.3.2 Modelling Uncertainty 1045
23.5.3.3 Statistical Uncertainty 1046
23.5.3.4 Decision Theoretic Uncertainty 1046
23.5.4 Risk Perception and Communication 1046
23.6 Risk-Based Land Management -- The Concept 1046
23.6.1 The Term ''Risk-Based Land Management'' 1047
23.6.1.1 Risk 1047
23.6.1.2 Land 1048
23.6.1.3 Management 1048
23.6.2 The Components of Risk-Based Land Management 1048
23.6.2.1 Fitness for Use 1048
23.6.2.2 Protection of the Environment 1049
23.6.2.3 Long-Term Care 1049
23.7 Application of RBLM in Practice 1050
23.7.1 Risk Reduction 1051
23.7.1.1 The Time Frame 1051
23.7.1.2 Choice of Solution 1051
23.7.2 Land Use Related Requirements 1052
23.7.2.1 Practical Needs 1052
23.7.2.2 Spatial Planning Requirements 1053
23.7.3 Using Natural Capacities in the Soil and Water Environment 1054
23.7.4 Costs 1055
23.7.4.1 Types of Cost 1055
23.7.4.2 Balancing Costs and Benefits 1055
23.7.5 Involving Stakeholders 1056
23.7.6 Managing Uncertainties 1056
23.7.6.1 Technical and Scientific Uncertainties 1056
23.7.6.2 Decision-Making 1057
23.7.7 Other Management Constraints and Influences 1057
23.8 Concluding Remarks 1058
References 1060
24 A Stakeholder's Perspective on Contaminated Land Management 1063
24.1 What is NICOLE and What is This Chapter About? 1064
24.2 The Road to Sustainable Risk Based Land Management 1066
24.3 A Strategic Approach to Contaminated Site Management: The End State Vision 1067
24.4 Improving the Efficiency of Site Assessment 1069
24.5 Remediation of Contaminated Sites and Waste Management 1071
24.6 The Power of Natural Processes 1072
24.7 Managing Megasites An Integrated Approach
24.8 Brownfields: A Blessing in Disguise? 1076
24.9 Redeveloping Contaminated Industrial Sites: A UK Developers Perspective 1077
24.10 A Sustainable Future? 1079
24.10.1 Sustainable Approaches 1079
24.10.2 Applied Sustainability -- A Case Study 1081
24.11 Conclusions 1082
Appendix: 10 Years of Progress: Two Road Maps to Contaminated Land Management 1083
What is Behind Redrawing the Site Management Map? 1084
References 1085
25 Sustainable Brownfield Regeneration 1086
25.1 Doing the Right Thing -- Right 1087
25.2 What are Brownfields? 1087
25.3 What is Regeneration? 1089
25.4 What is Sustainable Regeneration? 1089
25.5 Re Concepts in Regeneration 1092
25.6 Brownfield Regeneration: A Multi Stakeholder Challenge 1093
25.7 The CABERNET Brownfield Process Manager 1093
Box 25.1 The CABERNET Opportunity Plan (CABERNET 2005) 1094
25.8 International Brownfield Definitions 1095
25.8.1 Europe Union 1095
25.8.2 UK 1098
Box 25.2 Extract from Parliamentary Debate on the Definition of Previously Developed Land 1099
25.8.3 USA 1100
25.8.4 Comparison of Brownfield Definitions 1101
25.9 Typologies of Brownfield Sites 1103
25.9.1 Economic 1103
25.9.2 Temporal 1104
25.10 Sustainable Regeneration 1105
25.11 The Need for Vision 1106
25.12 Applying a Systems Analysis Approach to Brownfield Redevelopment 1108
25.13 Opportunities for Synergy (e.g. Carbon, Energy and Waste Management) 1108
25.14 Future Perspectives 1108
Box 25.3 Failed Vision Creates Brownfields 1109
References 1110
Index 1112
Erscheint lt. Verlag | 12.1.2011 |
---|---|
Zusatzinfo | XXVIII, 1104 p. 109 illus. |
Verlagsort | Dordrecht |
Sprache | englisch |
Themenwelt | Medizin / Pharmazie ► Gesundheitsfachberufe |
Medizin / Pharmazie ► Medizinische Fachgebiete ► Arbeits- / Sozial- / Umweltmedizin | |
Studium ► Querschnittsbereiche ► Klinische Umweltmedizin | |
Naturwissenschaften ► Biologie ► Ökologie / Naturschutz | |
Naturwissenschaften ► Chemie | |
Naturwissenschaften ► Geowissenschaften ► Geologie | |
Technik ► Umwelttechnik / Biotechnologie | |
Weitere Fachgebiete ► Land- / Forstwirtschaft / Fischerei | |
Schlagworte | contaminated sites • ecotoxicology • groundwater pollution • remediation • risk assessment • Soil Pollution |
ISBN-10 | 90-481-9757-0 / 9048197570 |
ISBN-13 | 978-90-481-9757-6 / 9789048197576 |
Haben Sie eine Frage zum Produkt? |
Größe: 22,7 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.