Electromagnetic Scattering using the Iterative Multi-Region Technique
Seiten
2007
Morgan & Claypool Publishers (Verlag)
978-1-59829-535-1 (ISBN)
Morgan & Claypool Publishers (Verlag)
978-1-59829-535-1 (ISBN)
In this work, an iterative approach using the finite difference frequency domain method is presented to solve the problem of scattering from large-scale electromagnetic structures. The idea of the proposed iterative approach is to divide one computational domain into smaller subregions and solve each subregion separately. Then the subregion solutions are combined iteratively to obtain a solution for the complete domain. As a result, a considerable reduction in the computation time and memory is achieved. This procedure is referred to as the iterative multiregion (IMR) technique.
Different enhancement procedures are investigated and introduced toward the construction of this technique. These procedures are the following: 1) a hybrid technique combining the IMR technique and a method of moment technique is found to be efficient in producing accurate results with a remarkable computer memory saving; 2) the IMR technique is implemented on a parallel platform that led to a tremendous computational time saving; 3) together, the multigrid technique and the incomplete lower and upper preconditioner are used with the IMR technique to speed up the convergence rate of the final solution, which reduces the total computational time. Thus, the proposed iterative technique, in conjunction with the enhancement procedures, introduces a novel approach to solving large open-boundary electromagnetic problems including unconnected objects in an efficient and robust way.
Different enhancement procedures are investigated and introduced toward the construction of this technique. These procedures are the following: 1) a hybrid technique combining the IMR technique and a method of moment technique is found to be efficient in producing accurate results with a remarkable computer memory saving; 2) the IMR technique is implemented on a parallel platform that led to a tremendous computational time saving; 3) together, the multigrid technique and the incomplete lower and upper preconditioner are used with the IMR technique to speed up the convergence rate of the final solution, which reduces the total computational time. Thus, the proposed iterative technique, in conjunction with the enhancement procedures, introduces a novel approach to solving large open-boundary electromagnetic problems including unconnected objects in an efficient and robust way.
Basics of the FDFD Method
IMR Technique for Large-Scale Electromagnetic Scattering Problems: 3D Case
IMR Technique for Large-Scale Electromagnetic Scattering Problems: 2D Case
The IMR Algorithm Using a Hybrid FDFD and Method of Moments Technique
Parallelization of the Iterative Multiregion Technique
Combined Multigrid Technique and IMR Algorithm
Concluding Remarks
Appendices
Erscheint lt. Verlag | 1.12.2007 |
---|---|
Reihe/Serie | Synthesis Lectures on Computational Electromagnetics |
Verlagsort | San Rafael |
Sprache | englisch |
Maße | 187 x 235 mm |
Themenwelt | Technik ► Elektrotechnik / Energietechnik |
ISBN-10 | 1-59829-535-7 / 1598295357 |
ISBN-13 | 978-1-59829-535-1 / 9781598295351 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich