Data Mining -  Fouad Sabry

Data Mining (eBook)

Unlocking Insights through Algorithmic Intelligence and Machine Learning

(Autor)

eBook Download: EPUB
2024 | 1. Auflage
327 Seiten
One Billion Knowledgeable (Verlag)
978-0-00-068242-0 (ISBN)
Systemvoraussetzungen
4,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Data mining is a cornerstone in the rapidly evolving field of robotics science, enabling robots and systems to efficiently process vast amounts of data to make intelligent decisions. This book, Data Mining, provides a comprehensive exploration of the concepts and techniques used in data mining within the context of robotics, machine learning, and artificial intelligence. Whether you're a professional in the field, a student, or a passionate enthusiast, this book offers valuable insights into transforming data into actionable knowledge that drives innovation.


1: Data mining: This chapter introduces the fundamentals of data mining, focusing on how algorithms and tools are applied to analyze large datasets in robotics.


2: Machine learning: Explores the intersection of data mining and machine learning, demonstrating how models can be trained to recognize patterns and make predictions in robotic systems.


3: Text mining: Delves into text mining, showing how robotic systems can extract useful information from unstructured textual data.


4: Association rule learning: Introduces association rule mining techniques to uncover hidden relationships in data, crucial for improving decisionmaking in robots.


5: Unstructured data: Discusses the challenges and methods for dealing with unstructured data, such as images or audio, in the context of robotics.


6: Concept drift: This chapter explains how machine learning models adapt over time as new data introduces changes, impacting robot performance.


7: Weka (software): Covers the use of Weka, a popular opensource software for data mining, to implement various mining algorithms in robotic applications.


8: Profiling (information science): Focuses on profiling techniques used to understand the behavior of systems and predict future actions, enhancing robotics decisionmaking.


9: Data analysis for fraud detection: Explores how data mining can help robots identify fraud and anomalies in various fields, such as finance or security.


10: ELKI: Provides a deep dive into the ELKI framework, useful for advanced data mining techniques and applied to robotics systems.


11: Educational data mining: Investigates how educational data mining can improve robotassisted learning environments and personalized education.


12: Knowledge extraction: Examines the process of extracting valuable insights from large datasets, guiding robots to make better decisions.


13: Data science: Introduces data science as an integral part of robotics, offering the foundation for building smarter, more capable robots.


14: Massive Online Analysis: Discusses techniques for processing massive datasets in realtime, ensuring robots can adapt to new information instantaneously.


15: Examples of data mining: This chapter presents realworld examples of data mining applications in robotics, showcasing its practical utility.


16: Artificial intelligence: Explores how artificial intelligence integrates with data mining techniques to empower robots with advanced decisionmaking capabilities.


17: Supervised learning: Focuses on supervised learning models and how they are used to train robots for specific tasks through labeled data.


18: Neural network (machine learning): Introduces neural networks and how they mimic human brain functions, essential for advanced robotics and autonomous systems.


19: Pattern recognition: Discusses pattern recognition techniques that allow robots to identify objects, gestures, or speech from raw data.


20: Unsupervised learning: Covers unsupervised learning techniques that allow robots to learn from data without predefined labels, enabling greater autonomy.


21: Training, validation, and test data sets: Explains the crucial role of data sets in evaluating and refining machine learning models, improving robotic accuracy and reliability.

Erscheint lt. Verlag 9.12.2024
Sprache englisch
Themenwelt Technik Maschinenbau
ISBN-10 0-00-068242-X / 000068242X
ISBN-13 978-0-00-068242-0 / 9780000682420
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 964 KB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich