Vectorization (eBook)
448 Seiten
Wiley (Verlag)
978-1-394-27296-9 (ISBN)
Enables readers to develop foundational and advanced vectorization skills for scalable data science and machine learning and address real-world problems
Offering insights across various domains such as computer vision and natural language processing, Vectorization covers the fundamental topics of vectorization including array and tensor operations, data wrangling, and batch processing. This book illustrates how the principles discussed lead to successful outcomes in machine learning projects, serving as concrete examples for the theories explained, with each chapter including practical case studies and code implementations using NumPy, TensorFlow, and PyTorch.
Each chapter has one or two types of contents: either an introduction/comparison of the specific operations in the numerical libraries (illustrated as tables) and/or case study examples that apply the concepts introduced to solve a practical problem (as code blocks and figures). Readers can approach the knowledge presented by reading the text description, running the code blocks, or examining the figures.
Written by the developer of the first recommendation system on the Peacock streaming platform, Vectorization explores sample topics including:
- Basic tensor operations and the art of tensor indexing, elucidating how to access individual or subsets of tensor elements
- Vectorization in tensor multiplications and common linear algebraic routines, which form the backbone of many machine learning algorithms
- Masking and padding, concepts which come into play when handling data of non-uniform sizes, and string processing techniques for natural language processing (NLP)
- Sparse matrices and their data structures and integral operations, and ragged or jagged tensors and the nuances of processing them
From the essentials of vectorization to the subtleties of advanced data structures, Vectorization is an ideal one-stop resource for both beginners and experienced practitioners, including researchers, data scientists, statisticians, and other professionals in industry, who seek academic success and career advancement.
Edward DongBo Cui is a Data Science and Machine Learning Engineering Leader who holds a PhD in Neuroscience from Case Western Reserve University, USA. Edward served as Director of Data Science at NBC Universal, building the first recommendation system on the new Peacock streaming platform. Previously, he was Lead Data Scientist at Nielsen Global Media. He is an expert in ML engineering, research, and MLOps to drive data-centric decision-making and enhance product innovation.
Enables readers to develop foundational and advanced vectorization skills for scalable data science and machine learning and address real-world problems Offering insights across various domains such as computer vision and natural language processing, Vectorization covers the fundamental topics of vectorization including array and tensor operations, data wrangling, and batch processing. This book illustrates how the principles discussed lead to successful outcomes in machine learning projects, serving as concrete examples for the theories explained, with each chapter including practical case studies and code implementations using NumPy, TensorFlow, and PyTorch. Each chapter has one or two types of contents: either an introduction/comparison of the specific operations in the numerical libraries (illustrated as tables) and/or case study examples that apply the concepts introduced to solve a practical problem (as code blocks and figures). Readers can approach the knowledge presented by reading the text description, running the code blocks, or examining the figures. Written by the developer of the first recommendation system on the Peacock streaming platform, Vectorization explores sample topics including: Basic tensor operations and the art of tensor indexing, elucidating how to access individual or subsets of tensor elementsVectorization in tensor multiplications and common linear algebraic routines, which form the backbone of many machine learning algorithmsMasking and padding, concepts which come into play when handling data of non-uniform sizes, and string processing techniques for natural language processing (NLP)Sparse matrices and their data structures and integral operations, and ragged or jagged tensors and the nuances of processing them From the essentials of vectorization to the subtleties of advanced data structures, Vectorization is an ideal one-stop resource for both beginners and experienced practitioners, including researchers, data scientists, statisticians, and other professionals in industry, who seek academic success and career advancement.
Erscheint lt. Verlag | 5.12.2024 |
---|---|
Sprache | englisch |
Themenwelt | Technik ► Bauwesen |
Schlagworte | algorithms • Artificial Intelligence • Computer Science • Data Science • data structure • Keras • machine learning • Mathematics • NumPy • Pandas • Python • PyTorch • Research • Scientific Computing • SciPy • string processing • tensorflow |
ISBN-10 | 1-394-27296-0 / 1394272960 |
ISBN-13 | 978-1-394-27296-9 / 9781394272969 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 7,7 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich