Steigerung der Bahngenauigkeit mobiler Industrieroboter durch eine Modellerweiterung mittels künstlicher neuronaler Netze (eBook)

eBook Download: PDF
2024 | 2024
XV, 116 Seiten
Springer Berlin Heidelberg (Verlag)
978-3-662-69561-6 (ISBN)

Lese- und Medienproben

Steigerung der Bahngenauigkeit mobiler Industrieroboter durch eine Modellerweiterung mittels künstlicher neuronaler Netze - Maximilian Neitmann
Systemvoraussetzungen
86,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Mobile Roboter besitzen das Potenzial, zu deutlichen Effizienzsteigerungen in der Fertigung kohlenstofffaserverstärkter Kunststoffe zu führen, wenn sie die aktuell üblichen Sondermaschinen ersetzen. Dazu müssen die mobilen Roboter Bahngenauigkeiten im Submillimeterbereich erreichen.  Da stationäre Roboter diese Bahngenauigkeiten mit Modellerweiterungen erreichen können, ist es die Kernfrage dieser Arbeit, ob diese auf mobile Roboter übertragbar sind. Bahngenauigkeitsuntersuchungen zeigen, dass sich die mobile Plattform in erster Linie durch eine herabgesetzte Fundamentsteifigkeit  auswirkt. Weiterhin wird beobachtet, dass die Trägheitskräfte des Roboterarmes genügen können, um eine Bewegung der Plattform relativ zum Hallenboden zu erzeugen.  Die Arbeit zeigt, dass künstliche neuronale Netze in der Lage sind, den Bahnfehler des mobilen Roboters mit einer mittleren Abweichung zum gemessenen Bahnfehler von 0,3mm vorhersagen zu können und damit potentiell dazu geeignet sind, die Bahngenauigkeit eines mobilen Roboters in den Submillimeterbereich zu steigern. Durch den Austausch des Bahninterpolators zwischen der Aufnahme der Trainingsdaten und der Erprobung der Modellerweiterung kann die Arbeit keine Genauigkeitssteigerungen zeigen. Mit einer Erweiterung des Trainingsdatensatzes oder durch den Einsatz nur eines einzigen Bahninterpolators scheint es jedoch möglich zu sein, dass Folgearbeiten die Steigerung der Bahngenauigkeit in den Submillimeterbereich nachweisen können.

Erscheint lt. Verlag 8.10.2024
Reihe/Serie Mechanics and Adaptronics
Zusatzinfo XV, 116 S. 51 Abb., 50 Abb. in Farbe.
Sprache deutsch
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte ISO 9283 • KNN • Künstliche Neuronale Netze • Laser Tracer • Laser Tracker • mobiler Manipulator • Mobiler Roboter • Modellerweiterung • Roboter Kalibrierung
ISBN-10 3-662-69561-8 / 3662695618
ISBN-13 978-3-662-69561-6 / 9783662695616
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99