Reinforcement Learning -  Zhiqing Xiao

Reinforcement Learning (eBook)

Theory and Python Implementation

(Autor)

eBook Download: PDF
2024
XXII, 559 Seiten
Springer Nature Singapore (Verlag)
978-981-19-4933-3 (ISBN)
Systemvoraussetzungen
80,24 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Reinforcement Learning: Theory and Python Implementation is a tutorial book on reinforcement learning, with explanations of both theory and applications. Starting from a uniform mathematical framework, this book derives the theory of modern reinforcement learning systematically and introduces all mainstream reinforcement learning algorithms such as PPO, SAC, and MuZero. It also covers key technologies of GPT training such as RLHF, IRL, and PbRL. Every chapter is accompanied by high-quality implementations, and all implementations of deep reinforcement learning algorithms are with both TensorFlow and PyTorch. Codes can be found on GitHub along with their results and are runnable on a conventional laptop with either Windows, macOS, or Linux.

This book is intended for readers who want to learn reinforcement learning systematically and apply reinforcement learning to practical applications. It is also ideal to academical researchers who seek theoretical foundation or algorithm enhancement in their cutting-edge AI research.


Reinforcement Learning: Theory and Python Implementation is a tutorial book on reinforcement learning, with explanations of both theory and applications. Starting from a uniform mathematical framework, this book derives the theory of modern reinforcement learning systematically and introduces all mainstream reinforcement learning algorithms such as PPO, SAC, and MuZero. It also covers key technologies of GPT training such as RLHF, IRL, and PbRL. Every chapter is accompanied by high-quality implementations, and all implementations of deep reinforcement learning algorithms are with both TensorFlow and PyTorch. Codes can be found on GitHub along with their results and are runnable on a conventional laptop with either Windows, macOS, or Linux.This book is intended for readers who want to learn reinforcement learning systematically and apply reinforcement learning to practical applications. It is also ideal to academical researchers who seek theoretical foundation or algorithm enhancement in their cutting-edge AI research.
Erscheint lt. Verlag 28.9.2024
Zusatzinfo XXII, 559 p. 61 illus., 60 illus. in color.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik Maschinenbau
Schlagworte Artificial Intelligence • Deep Reinforcement Learning • machine learning • Python Implementations • Reinforcement Learning
ISBN-10 981-19-4933-6 / 9811949336
ISBN-13 978-981-19-4933-3 / 9789811949333
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 8,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99