Nanonetworks (eBook)

The Future of Communication and Computation
eBook Download: EPUB
2024
773 Seiten
Wiley-IEEE Press (Verlag)
978-1-394-21312-2 (ISBN)

Lese- und Medienproben

Nanonetworks - Florian-Lennert A. Lau
Systemvoraussetzungen
116,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Learn the basics-and more-of nanoscale computation and communication in this emerging and interdisciplinary field

The field of nanoscale computation and communications systems is a thriving and interdisciplinary research area which has made enormous strides in recent years. A working knowledge of nanonetworks, their conceptual foundations, and their applications is an essential tool for the next generation of scientists and network engineers. Nanonetworks: The Future of Communication and Computation offers a thorough, accessible overview of this subject rooted in extensive research and teaching experience. Offering a concise and intelligible introduction to the key paradigms of nanoscale computation and communications, it promises to become a cornerstone of education in these fast-growing areas.

Readers will also find:

  • Detailed treatment of topics including network paradigms, machine learning, safety and security
  • Coverage of the history, applications, and important theories of nanonetworks research
  • Examples and use-cases for all formulas and equations

Nanonetworks is ideal for advanced undergraduate and graduate students in engineering and science, as well as practicing professionals looking for an introductory book to help them understand the foundations of nanonetwork systems.

Florian-Lennert A. Lau, PhD, MSc, obtained his MSc in 2016 and his PhD in 2020 from the Universität zu Lübeck, winning the KuVS award for the best Ph.D. thesis. He has been Head of the Nano Group since November 2021. His research interests cover self-assembly systems, nanonetworks, algorithmics, computational complexity theory, modelling human learning, human consciousness & logical inference systems, and distributed AI-systems.

List of Figures


  1. Figure 1.1 Soccer Ball vs. Earth
  2. Figure 1.2 Size Comparison Between Different Structures
  3. Figure 1.3 Mindmap of Nanotechnologies
  4. Figure 1.4 Electric Nanorobot
  5. Figure 2.2 Early Chopping Tools
  6. Figure 2.2 A 200 000-year-old hand ax (a) and a 30 000-year-old statue (b)
  7. Figure 2.3 Ancient Egypt Potter’s Wheel
  8. Figure 2.4 Damascene steel
  9. Figure 2.5 The Germanic sword “Ulfberth”
  10. Figure 2.6 Small Scale Manufacturing Methods
  11. Figure 2.7 Healthy and Cancerous Cells in Comparison
  12. Figure 2.8 3D-Printed Micro Structure
  13. Figure 2.9 Some Allotropes of Carbon
  14. Figure 2.10 An Array of Microbots
  15. Figure 2.11 A Box From DNA-Origami
  16. Figure 2.12 An Overview of Tile DNA-Nanostructures
  17. Figure 2.13 An Overview of DNA-Nanostructures
  18. Figure 2.14 An Artificial Living Organism Created From Frog Cells
  19. Figure 3.1 Storyboard of a Nanomedicine Scenario
  20. Figure 3.2 Nanoparticles in Drug Delivery
  21. Figure 3.3 Maslow’s Hierarchy of Needs
  22. Figure 4.1 Carbon Atom
  23. Figure 4.2 An Example Molecule
  24. Figure 4.3 c60 and c540 fullerenes. (a) c60 fullerene, also called “Buckminsterfullerene.” (b) c540 fullerene
  25. Figure 4.4 Different Types of Carbon Nanotubes
  26. Figure 4.5 A rope made out of carbon nanotubes
  27. Figure 4.6 An Example DNA-Helix Segment
  28. Figure 4.7 Timeline of DNA Discoveries
  29. Figure 4.8 Venn-Diagramm of Nanostructures
  30. Figure 4.9 The State Space for a MDP
  31. Figure 4.10 An MDP With Sand Pit and Charging Station
  32. Figure 4.11 An Example Policy for a Nanodevice
  33. Figure 4.12 A POMDP Example Scenario
  34. Figure 4.13 ADecPOMDP Example
  35. Figure 4.14 An Example DecPOMDPcom
  36. Figure 4.15 Biological Nanorobot
  37. Figure 4.16 Bacterial Nanorobot
  38. Figure 4.17 Liposomes and Micelles
  39. Figure 4.18 Example Circuit
  40. Figure 4.19 Self-Assembled Snowflakes
  41. Figure 4.20 DNA-Origami
  42. Figure 4.21 Wang-Tiles
  43. Figure 4.22 DX and TX-Tile
  44. Figure 4.23 Holliday Junction
  45. Figure 4.24 Tiletype examples
  46. Figure 4.25 DNA-Tile in the Process of Binding
  47. Figure 4.26 (a) 2D-Tileset (b) Assembly Sequence of a TAS
  48. Figure 4.27 Growth- and Facet-Errors
  49. Figure 4.28 (a) k × k Proofreading Tiles. (b) Snaked Proofreading Tiles
  50. Figure 4.29 Odd/even Snaked-Block
  51. Figure 4.30 3D-Snaked Proofreading
  52. Figure 4.31 HollowCube of Edge Length 5
  53. Figure 4.32 Linear Runtime Hollow Cube
  54. Figure 4.33 Constant Size Square Tileset
  55. Figure 4.34 Square of Logarithmically Many Tile Types
  56. Figure 5.1 Inclusion Diagram of Complexity Classes
  57. Figure 5.2 Reduction Scheme
  58. Figure 5.3 QCA Neighborhoods
  59. Figure 5.4 Quantum Dot Cell With Tunnel Junctions
  60. Figure 5.5 Binary Interpretation of QCA States
  61. Figure 5.6 Majority Gate
  62. Figure 5.7 Invertergatter
  63. Figure 5.8 (a) Tileset that assembles into a 4-bit AND at temperature 2. (b) Resulting message molecule
  64. Figure 5.9 Ligand of a Message Molecule
  65. Figure 5.10 Receptor for Message Molecules
  66. Figure 5.11 4 bitAND-Nanonetwork
  67. Figure 5.12 Messages Molecule Without Nucleation Errors
  68. Figure 5.13 Message Combination With Ligand
  69. Figure 5.14 General Boolean Tileset Construction
  70. Figure 5.15 Message Molecule for the Decision Problem THRES
  71. Figure 5.16 Message Molecule for the function problem ADD
  72. Figure 5.17 Message Molecule for the Function Problem MULT
  73. Figure 5.18 Message Molecule for the Function Problem XOR
  74. Figure 5.19 Message Molecule for the Counting Problem
  75. Figure 5.20 Complexity of Different MDP Variations
  76. Figure 5.21 A Lifted DecPOMDPcom
  77. Figure 6.1 Average Data Rates Over Time
  78. Figure 6.2 Connecting in-Body and out-Body
  79. Figure 6.3 Molecular Communication Channel Model
  80. Figure 6.4 Receptor Ligand Interaction
  81. Figure 6.5 Ligand of a Message Molecule
  82. Figure 6.6 Receptor for Message Molecules
  83. Figure 6.7 The Architecture of a FCNN Network
  84. Figure 6.8 Example Nanonode Distributions
  85. Figure 6.9 Hop Count Network After a Reset
  86. Figure 6.10 An MST After the propagation Phase
  87. Figure 6.11 The Retrieval-PhaseWorst-Case
  88. Figure 6.12 Number of propagation messages sent
  89. Figure 6.13 Destructive Retrieval Message Number
  90. Figure 7.1 The Process of Chemotaxis
  91. Figure 7.2 A Motor Protein Moving Cargo Along a Track
  92. Figure 7.3 Bubble Propulsion
  93. Figure 7.4 Overlapping Hop-Count Zones
  94. Figure 7.5 The Initial 3D Hop Count State
  95. Figure 7.6 The 3D Hop Count State After Propagation
  96. Figure 7.7 The 3D Hop Count State With Real Distances
  97. Figure 7.8 3D Hop Counts in a Human Model
  98. Figure 7.9 Proteom Fingerprint Strengths
  99. Figure 7.10 BloodvoyagerS Circulatory System Model
  100. Figure 7.11 Model of Individual Blood Vessels in Nanonetworks
  101. Figure 7.12 Different Modules of MEHLISSA
  102. Figure 8.1 Diagnostic Procedures Overview
  103. Figure 8.2 Overview of Quantitative Procedures of Laboratory Analytical Methods
  104. Figure 8.3 A CNT Sensors
  105. Figure 8.4 Molecule Counter
  106. Figure 8.5 DNA-Box Dispenser
  107. Figure 9.1 A Generic Fuel Cell
  108. Figure 9.2 The Broadcast Storm
  109. Figure 9.3 Harvesting vs. Sending Duration
  110. Figure 9.4 Compariosn of Different Message Retrieval Schemes
  111. Figure 9.5 Conical Signal Propagation in Hop Count Network
  112. Figure 9.6 Obstacles in Hop-Count Routing
  113. Figure 9.7 SLR Routing With Hindrances
  114. Figure 9.8 Ring-Saving in Hop-Count Nanonetworks
  115. Figure 9.9 Naive Flooding vs. Ring Saving
  116. Figure 9.10 SLR vs. Ring Saving + SLR
  117. Figure 10.1 Several Example Quartz
  118. Figure 10.2 Clock Drift
  119. Figure 10.3 NTPv4 Architecture
  120. Figure 10.4 QCA Clock
  121. Figure 10.5 Dysfunctional QCA Majority Gate
  122. Figure 10.6 Lanmport Clock Example
  123. Figure 10.7 The Chandy-Lamport Snapshot Algorithm
  124. Figure 10.8 Sequential Consistency
  125. Figure 10.9 Transitivity And Consistency
  126. Figure 10.10 Causal Consistency
  127. Figure 10.11 Langton’s Ant Simulation
  128. Figure 11.1 Nanonetwork Safety Architecture
  129. Figure 12.1 IoNT Reference Architecture
  130. Figure 12.2 A Body Area Network
  131. Figure 12.3 The SwarmNetwork Rules
  132. Figure 12.4 An Example Acoustic Nanonetwork
  133. Figure 12.5 An Example Electromagnetic Nanonetwork
  134. Figure 12.6 Nanonetwork on Chip Architecture
  135. Figure 12.7 An Example Bacterial Nanonetwork
  136. Figure 12.8 An Example Molecular Nanonetwork
  137. Figure 12.9 DNA-Based Nanonetwork Reference Architecture
  138. Figure 12.10 4-bit in 2HAM
  139. Figure 12.11 Result of 100 Simulations of a 4 Bit-AND
  140. Figure 12.12 3 Bit-THRES-Tileset
  141. Figure 12.13 THRES as a Nanonetwork
  142. Figure 12.14 Result of 50 kTAM Simulations for a 3 Bit-THRES
  143. Figure 12.15 4 bitADD Tileset
  144. Figure 12.16 ADD as a Nanonetwork
  145. Figure 12.17 Result of 50 kTAM -Simulations for ADD
  146. Figure 12.18 General Boolean Tileset Construction
  147. Figure 12.19 A DNA-Based Nanonetwork for Boolean Formulas
  148. Figure...

Erscheint lt. Verlag 31.7.2024
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Schlagworte DNA-Origami • Internet of bio-nano things • internet of things • molecular communication • Nanodevices • nanomedicine • nanonetworks • nanorobots • nanoscale computational models • nanoscale sensor networks • nanotechnology • Self-Assembly • Terahertz Communication
ISBN-10 1-394-21312-3 / 1394213123
ISBN-13 978-1-394-21312-2 / 9781394213122
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 36,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99