Deep Learning (eBook)
416 Seiten
Wiley (Verlag)
978-1-119-86187-4 (ISBN)
An engaging and accessible introduction to deep learning perfect for students and professionals
In Deep Learning: A Practical Introduction, a team of distinguished researchers delivers a book complete with coverage of the theoretical and practical elements of deep learning. The book includes extensive examples, end-of-chapter exercises, homework, exam material, and a GitHub repository containing code and data for all provided examples.
Combining contemporary deep learning theory with state-of-the-art tools, the chapters are structured to maximize accessibility for both beginning and intermediate students. The authors have included coverage of TensorFlow, Keras, and Pytorch. Readers will also find:
- Thorough introductions to deep learning and deep learning tools
- Comprehensive explorations of convolutional neural networks, including discussions of their elements, operation, training, and architectures
- Practical discussions of recurrent neural networks and non-supervised approaches to deep learning
- Fulsome treatments of generative adversarial networks as well as deep Bayesian neural networks
Perfect for undergraduate and graduate students studying computer vision, computer science, artificial intelligence, and neural networks, Deep Learning: A Practical Introduction will also benefit practitioners and researchers in the fields of deep learning and machine learning in general.
Manel Martínez-Ramón, PhD, is King Felipe VI Endowed Chair and Professor in the Department of Electrical and Computer Engineering at the University of New Mexico in the United States. He earned his doctorate in Telecommunication Technologies at the Universidad Carlos III de Madrid in 1999.
Meenu Ajith, PhD, is a Postdoctoral Research Associate in Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) at Georgia State University, Georgia Institute of Technology, and Emory University. She earned her doctorate degree in Electrical Engineering from the University of New Mexico in 2022. Her research interests include machine learning, computer vision, medical imaging, and image processing.
Aswathy Rajendra Kurup, PhD, is a Data Scientist at Intel Corporation. She earned her doctorate degree in Electrical Engineering from the University of Mexico in 2022. Her research interests include image processing, signal processing, deep learning, computer vision, data analysis and data processing.
An engaging and accessible introduction to deep learning perfect for students and professionals In Deep Learning: A Practical Introduction, a team of distinguished researchers delivers a book complete with coverage of the theoretical and practical elements of deep learning. The book includes extensive examples, end-of-chapter exercises, homework, exam material, and a GitHub repository containing code and data for all provided examples. Combining contemporary deep learning theory with state-of-the-art tools, the chapters are structured to maximize accessibility for both beginning and intermediate students. The authors have included coverage of TensorFlow, Keras, and Pytorch. Readers will also find: Thorough introductions to deep learning and deep learning toolsComprehensive explorations of convolutional neural networks, including discussions of their elements, operation, training, and architecturesPractical discussions of recurrent neural networks and non-supervised approaches to deep learningFulsome treatments of generative adversarial networks as well as deep Bayesian neural networks Perfect for undergraduate and graduate students studying computer vision, computer science, artificial intelligence, and neural networks, Deep Learning: A Practical Introduction will also benefit practitioners and researchers in the fields of deep learning and machine learning in general.
Erscheint lt. Verlag | 2.7.2024 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Netzwerke |
Technik ► Elektrotechnik / Energietechnik | |
ISBN-10 | 1-119-86187-X / 111986187X |
ISBN-13 | 978-1-119-86187-4 / 9781119861874 |
Haben Sie eine Frage zum Produkt? |
Größe: 14,8 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich