Fiber-Reinforced Composite Materials
Springer International Publishing (Verlag)
978-3-031-32560-1 (ISBN)
This book provides a comprehensive overview of the current progress in fiber-reinforced plastics (FRP), covering manufacturing, mechanical behavior, and resistance performance. It includes the elastic and damage behavior of unidirectional FRP, and highlights the improvements achieved by adding multiwall carbon nanotubes. The material resistance is assessed through fatigue response, local behavior, local properties, and failure mechanisms, including crack density and microcrack propagation behavior. The book also explores the degradation of macroscopic mechanical properties such as elastic modulus and compressive strength versus plastic strains. Additionally, it focuses on the progress made in out-of-plane composite characterization and modeling response for simulations of critical mechanical parts currently used in different industries, thanks to advances in manufacturing techniques that allow for the production of increasingly complex and thicker geometries.
Dr. Tuninetti is Civil Aerospace Engineer and has a master's in Mechanical Engineering from Universidad de Concepción (CHILE). In 2014, he obtained the degree of Docteur en Sciences de l'ingénieur at the Université de Liège (BELGIUM). In 2015, he worked for Komatsu Cummins Chile as DFSE Engineer specialized in failure analysis. He has provided consultancy services to several design and manufacturing companies such as CMPC, John Cockerill Energy, and Safran Aero Boosters (Ex Techspace Aero). Currently, he is Associate Professor in the Department of Mechanical Engineering at Universidad de La Frontera (CHILE). His work focuses on mechanical characterization of materials, mechanical modeling of materials and finite element simulations for product manufacturing processes, and design of mechanical components.
Dr. Medina is Civil Aerospace Engineer and has a master's in Mechanical Engineering and Doctor in Science and Engineering of materials from Universidad de Concepción (CHILE). He is Associate Professor at the Department of Mechanical Engineering, Universidad de Concepción (CHILE). His work focuses on the mechanical characterization of materials, development of new materials, additive manufacturing and design of mechanical components.
Dr. Salas is a Mechanical Engineer, Master in Mechanical Engineering, and PhD in Materials Science and Engineering from the University of Concepción (CHILE). He is part of the Composite Materials Laboratory and the Interdisciplinary Group of Advanced Nanotechnology (GINA) of the University of Concepción, developing his career and working on the characterization, processing, and design of materials and structures of nanocomposites and multiscale composite materials. At the same time, his passion for music and wind instruments led him to found an interdisciplinary group for designing and manufacturing musical instruments, incorporating various mechanical disciplines to design, improve and manufacture musical instruments in composite materials.
Mr. Valdivia is a Mechanical Civil Engineer from Universidad de Concepción (CHILE). In 2019 he obtained the Master of Sciences in Mechanical Engineering at the same university. Since 2011 he works as a project engineer at Ramtun Engineering S.A. focusing on mechanical design, finite element simulations and applied mechanics. In 2022 he joined the PhD program in Applied Engineering in the High Performance Machining Research Group of the Mechanics and Manufacturing Department of Mondragon Unibertsitatea in the Basque Country (SPAIN).
Dr. Fernandez is a research assistant at the aerospace and mechanical engineering department of the University of Liège, Belgium. He obtained his PhD degree in engineering sciences in 2020, with a thesis addressing new topology optimization methods for additive manufacturing. Prior to his PhD degree, he obtained an MSc degree in mechanical engineering at the University of Concepción, Chile. There, Dr. Fernandez worked as a research engineer in projects involving the research and development of composites materials reinforced with fibers and nanoparticles. His current research areas include simulation of free surface fluid flows using particle methods, simulation of fluid-structure interactions, simulation of phase change, and the development of new topology optimization methods for additive manufacturing and fiber-reinforced manufacturing processes.
Dr. Meléndrez is a Chemist from the Universityo
Chapter 1. Introduction.- Chapter 2. Out-of-plane compressive fatigue behaviour of uni-directional glass fiber reinforced composite.- Chapter 3. Analysis and prediction of failure in FRP.- Chapter 4. Impact of the multiwall carbon nanotubes on the transverse compressive strength and damage.- Chapter 5. Mechanical performance of FRC manufactured from recycled carbon fibers with grown CNTs.
Erscheinungsdatum | 08.06.2024 |
---|---|
Reihe/Serie | Synthesis Lectures on Mechanical Engineering |
Zusatzinfo | VIII, 61 p. 28 illus., 21 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 168 x 240 mm |
Themenwelt | Technik ► Maschinenbau |
Schlagworte | carbon fibers • Carbon Nanotubes • fatigue behaviour • Fiber matrix interface Strenght • fiber reinforced plastics • Mechanical Performance • Microwave assisted recycling • Resin Transfer Molding |
ISBN-10 | 3-031-32560-5 / 3031325605 |
ISBN-13 | 978-3-031-32560-1 / 9783031325601 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich