Thermal Management for Opto-electronics Packaging and Applications -  Run Hu,  Xiaobing Luo,  Bin Xie

Thermal Management for Opto-electronics Packaging and Applications (eBook)

eBook Download: EPUB
2024 | 1. Auflage
368 Seiten
Wiley (Verlag)
978-1-119-17929-0 (ISBN)
Systemvoraussetzungen
107,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Thermal Management for Opto-electronics Packaging and Applications

A systematic guide to the theory, applications, and design of thermal management for LED packaging

In Thermal Management for Opto-electronics Packaging and Applications, a team of distinguished engineers and researchers deliver an authoritative discussion of the fundamental theory and practical design required for LED product development. Readers will get a solid grounding in thermal management strategies and find up-to-date coverage of heat transfer fundamentals, thermal modeling, and thermal simulation and design.

The authors explain cooling technologies and testing techniques that will help the reader evaluate device performance and accelerate the design and manufacturing cycle. In this all-inclusive guide to LED package thermal management, the book provides the latest advances in thermal engineering design and opto-electronic devices and systems.

The book also includes:

  • A thorough introduction to thermal conduction and solutions, including discussions of thermal resistance and high thermal conductivity materials
  • Comprehensive explorations of thermal radiation and solutions, including angular- and spectra-regulation radiative cooling
  • Practical discussions of thermally enhanced thermal interfacial materials (TIMs)
  • Complete treatments of hybrid thermal management in downhole devices

Perfect for engineers, researchers, and industry professionals in the fields of LED packaging and heat transfer, Thermal Management for Opto-electronics Packaging and Applications will also benefit advanced students focusing on the design of LED product design.

Xiaobing Luo, PhD, is a Full Professor at Huazhong University of Science and Technology, China. He has extensive experience as a Senior Engineer for Samsung Electronics in Seoul, Korea. His research interests include LED packaging, thermal management, and micropumps, and he has authored 110 academic papers.

Run Hu, PhD, is a Professor and Doctoral Supervisor at the School of Energy and Power Engineering at the Huazhong University of Science and Technology, China. He was the recipient of the Outstanding Youth Scholar and Chutian Scholar awards in Hubei province.

Bin Xie, PhD, is an Assistant Professor at the School of Mechanical Science and Engineering at the Huazhong University of Science and Technology, China. He was the recipient of the Natural Science Prize of Hubei Province (second class) and the Outstanding Paper Award from the International Conference on Electronic Packaging Technology (ICEPT).


A systematic guide to the theory, applications, and design of thermal management for LED packaging In Thermal Management for Opto-electronics Packaging and Applications, a team of distinguished engineers and researchers deliver an authoritative discussion of the fundamental theory and practical design required for LED product development. Readers will get a solid grounding in thermal management strategies and find up-to-date coverage of heat transfer fundamentals, thermal modeling, and thermal simulation and design. The authors explain cooling technologies and testing techniques that will help the reader evaluate device performance and accelerate the design and manufacturing cycle. In this all-inclusive guide to LED package thermal management, the book provides the latest advances in thermal engineering design and opto-electronic devices and systems. The book also includes: A thorough introduction to thermal conduction and solutions, including discussions of thermal resistance and high thermal conductivity materials Comprehensive explorations of thermal radiation and solutions, including angular- and spectra-regulation radiative cooling Practical discussions of thermally enhanced thermal interfacial materials (TIMs) Complete treatments of hybrid thermal management in downhole devices Perfect for engineers, researchers, and industry professionals in the fields of LED packaging and heat transfer, Thermal Management for Opto-electronics Packaging and Applications will also benefit advanced students focusing on the design of LED product design.

List of Nomenclatures


Abbreviation


1D
one‐dimensional
2D
two‐dimensional
3D
three‐dimensional
α‐GaN
Α‐gallium nitride
β‐Ga2O3
Β‐zirconia
AM
arrangement followed by mixing method
APG
alkyl polyglucoside
AW
atmospheric transparent window
BeO
beryllium oxide
BG
bilayer graphene
BGA
ball grid array
BLT
bond line thickness
BN
boron nitride
BW
bandwidth
CB
conduction band
CCT
correlated color temperature
CFD
computational fluid dynamics
CFs
carbon fibers
CH2I2
diiodomethane
CIE
Commission Internationale de L'Eclairage
CLTE
coefficient of linear thermal expansion
CMOS
complementary metal‐oxide semiconductor
CMY
Cooper–Mikic–Yovanovich
CNC
computerized numerical control
CNT(s)
carbon nanotube(s)
Com‐film
luminescent films containing without hBN
Com‐WLEDs
common QDs‐WLEDs without hBN
CPCMs
composite phase change materials
CRC
colored radiative cooler
CRI
color‐rendering index
CS
crystal structure
CSF
cumulative structure function
CSP
chip‐scale package
CTAB
hexadecyl trimethyl ammonium bromide
CTE
coefficients of thermal expansion
CTMS
centralized thermal management system
CVD
chemical vapor deposition
DA
diffusion approximation
DAA
die attach adhesive
DBC
direct bonded copper substrates
DC
dielectric constants
DIP
dual in‐line package
DM
directly mixing without arrangement method
DMA
dynamic mechanical analysis
DPC
direct plate copper substrates
DQN
deep Q‐learning network
DRL
deep reinforcement learning
DSC
differential scanning calorimetry
DTMS
distributed thermal management system
EBL
electron blocking layer
ECB
electrical conductivity bandwidth
EDS
energy dispersive spectroscopy
EG
expanded graphite
EGE
epsilon greedy exploration
EL
electroluminescence
EMA
effective medium approximation
EQE
external quantum efficiency
ER
electrical resistivity
FCP
flip chip package
FEA
finite‐element analysis
FEM
finite‐element model
FES
finite‐element simulation
FLG
few‐layers graphene
FRTE
an extension of RTE integrated with fluorescence
FWHM
full‐width‐at‐half‐maximum
GA
genetic algorithm
GNP
graphene nanoplatelets
GNs
graphene nanosheets
GO
graphene oxide
GP
graphene
HAADF‐STEM
high‐angle‐annular‐dark‐field STEM
HBC
hybrid body cooling
hBN
hexagonal boron nitride
hBNPs
hexagonal boron nitride platelets
hBNS
hexagonal boron nitride sheets
HEC
hydroxyethyl cellulose
HG
Henyey–Greenstein
HP
heat pipe
HRTEM
high‐resolution transmission electron microscope
HTHP
high‐temperature and high‐pressure
IAM1.5
the standard AM 1.5 spectrum of solar radiation
IC(s)
integrated circuit(s)
IGBT(s)
insulated gate bipolar transistor(s)
iNEMI
international electronics manufacturing initiative
IQE
internal quantum efficiency
IR
infrared
Iso‐film
luminescent films containing with isotropic distributed hBN
Iso‐WLEDs
isotropic thermal conductive QDs‐WLEDs with isotropic arranging hBN
JAICIPM
jet array impingement cooling system with integrated piezoelectric micropump
JIBC
jet impingement body cooling
JISC
jet impingement surface cooling
KM
Kubelka–Munk
LDs
laser diodes
LE
luminous efficiency
LED(s)
light‐emitting diode(s)
LEE
light extraction efficiency
LERP
laser‐excited remote phosphor
LFA
laser flash analysis
LiAlO2
lithium aluminate
LM
lattice mismatch
MA
mixing followed by arrangement
MBAM
modified Bruggeman asymmetric model
MCE
mixed cellulose esters
MCM
multi‐chip module
MCPCB
metal core‐printed circuit board
MD
molecular dynamics
MDM
metal–dielectric–metal
mhBN
magnetically responsive hBN
mhBN‐silicone
Imhbn‐silicone
m‐MPMF
micro multiple piezoelectric magnetic fan
mohBN
modified hBN
MOSFET
metal‐oxide‐semiconductor field‐effect transistor
MPP
mesophase pitch
MQW
multiple quantum well
MWT
maximal working temperature
NICFs
nickel‐coated carbon fibers
PAN
polyacrylonitrile
PCB
printed circuit board
pc‐LD
phosphor‐converted laser diode
pc‐LED
phosphor‐converted light‐emitting diode
PCM(s)
phase change material(s)
PDMS
polydimethylsiloxane
PEEK
poly‐ether–ether–ketone
PET
photo‐electro‐thermal
PG
propylene glycol
PID
proportional–integral–derivative (controller)
PL
photoluminescence
PMMA
polymethyl methacrylate
PTMS
passive thermal management system
QDs
quantum dots
QDs‐WLEDs
QDs‐converted WLEDs
QE
quantum efficiency
QFP
quad flap package
QSNs
QDs‐silica coated nanoparticles
QY
quantum yield
RC
radiative cooling
RDL
redistribution layer
RE
relative error
RMSE
root mean square error
RTDs
resistance temperature detectors
RTE
radiative transfer equation
SAM
self‐assembled monolayer
SAM‐CH3
alkanethiol type SAM
SAM‐NH2
11‐amino‐1‐undecanethiol hydrochloride
SCMC
sodium carboxymethyl cellulose
SEM
scanning electron microscope
SiC
carborundum
SILAR
successive ionic layer adsorption and reaction
SLA
stereolithography
SLG
single‐layer graphene
SMD
Sauter mean diameter
SNTP
solid heat conduction, natural air convection, thermal radiation, and phase change processes
SOI
silicon‐on‐insulator
SP
solid heat conduction and phase change processes
SPD
spectral power distribution
SR
selective radiative cooling radiator
SRH
Shockley–Read–Hall
SSH
the sustainability of the image horizontal direction
SSV
the sustainability of the image in the vertical direction
STEM
scanning transmission electron microscope
TC
thermal camouflage
TCEE
thermal conductivity enhancement efficiency
TD
thermal diffusion coefficient
TEOS
tetraethyl orthosilicate
TES
thermal energy storage
TFFC
thin‐film flip‐chip
TG
thermal gravimetric analysis
TIM(s)
thermal interface material(s)
TIR
total internal reflection
TMA
thermal mechanical analysis
TmhBN‐silicone
through‐plane‐aligned mhBN‐silicone
TMM
transfer matrix method
TMR
thermal mismatch rate
TMS(s)
thermal management system(s)
TO
transistor outline
TOP
tri‐n‐octylphosphine
TRPL
time‐resolved PL
TSOP
thin small outline package
TSV
through silicon via
UHMR
ultrahigh magnetic response
UV
ultraviolet
VB
valance band
VC
vapor chamber
VCHP
variable conductance heat pipe
Ver‐film
luminescent films containing with vertical hBNSCMC templates
Ver‐WLEDs
vertical thermal conductive QDs‐WLEDs
...

Erscheint lt. Verlag 29.5.2024
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
ISBN-10 1-119-17929-7 / 1119179297
ISBN-13 978-1-119-17929-0 / 9781119179290
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 38,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99