Machine Learning for Materials Discovery (eBook)

Numerical Recipes and Practical Applications
eBook Download: PDF
2024 | 1. Auflage
XX, 279 Seiten
Springer-Verlag
978-3-031-44622-1 (ISBN)

Lese- und Medienproben

Machine Learning for Materials Discovery -  N. M. Anoop Krishnan,  Hariprasad Kodamana,  Ravinder Bhattoo
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Focusing on the fundamentals of machine learning, this book covers broad areas of data-driven modeling, ranging from simple regression to advanced machine learning and optimization methods for applications in materials modeling and discovery. The book explains complex mathematical concepts in a lucid manner to ensure that readers from different materials domains are able to use these techniques successfully. A unique feature of this book is its hands-on aspect-each method presented herein is accompanied by a code that implements the method in open-source platforms such as Python. This book is thus aimed at graduate students, researchers, and engineers to enable the use of data-driven methods for understanding and accelerating the discovery of novel materials.




N. M. Anoop Krishnan is an Associate Professor in the Department of Civil Engineering, IIT Delhi, with a joint affiliation in the Yardi School of Artificial Intelligence, IIT Delhi. Prior to this, he worked as Lecturer and Postdoctoral Researcher at the University of California, Los Angeles. His primary area of research includes data- and physics-based modeling of materials. He has published more than 100 peer-reviewed publications and won several prestigious awards including the Google research scholar award (2023), W. A. Weyl international glass science award, Young Associate 2022 (Indian Academy of Sciences), Young Engineer Award 2020 (Indian National Academy of Engineering). 

 

Hariprasad Kodamana is an Associate Professor in the Department of Chemical Engineering, IIT Delhi withaffiliation in the Yardi School of Artificial Intelligence, IIT Delhi. Prior to this, he worked as Assistant Professor at IIT Kharagpur, Postdoctoral Researcher and Sessional Instructor at the University of Alberta, Canada, and Process Engineer at GE Energy. His primary area of research includes data-driven modeling and optimization. He serves as Reviewer for various scientific journals and has won several awards including the Young Faculty Incentive Fellowship (IIT Delhi) and the IIT Bombay Institute Award for best Ph.D. thesis.

 

Ravinder Bhattoo is currently a postdoctoral researcher in the University of Wisconsin-Madison. Prior to this, he completed his Ph.D. in the Department of Civil Engineering, IIT Delhi and undergraduate degree in civil engineering from IIT Roorkee. He works in the area of machine learning applied to glass science to predict the composition-property relationships in glasses. He has won several awards including the prestigious prime minister's research fellowship (PMRF).

Erscheint lt. Verlag 6.5.2024
Reihe/Serie Machine Intelligence for Materials Science
Zusatzinfo XX, 279 p. 110 illus., 95 illus. in color.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Statistik
Naturwissenschaften Physik / Astronomie
Technik Maschinenbau
Schlagworte bayesian optimization • Codes for Materials Design • Composition-Property Models for Materials • Computational Glass Modeling • Data-driven Modelling • Inverse Design of Materials • Machine Learning for Glasses • Materials Property Prediction • Materials Science Deep Learning • Physics-Informed Machine Learning for Materials • Property Prediction for Materials
ISBN-10 3-031-44622-4 / 3031446224
ISBN-13 978-3-031-44622-1 / 9783031446221
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 15,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
17,43