Putting AI in the Critical Loop -

Putting AI in the Critical Loop (eBook)

Assured Trust and Autonomy in Human-Machine Teams
eBook Download: EPUB
2024 | 1. Auflage
304 Seiten
Elsevier Science (Verlag)
978-0-443-15987-9 (ISBN)
Systemvoraussetzungen
189,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Providing a high level of autonomy for a human-machine team requires assumptions that address behavior and mutual trust. The performance of a human-machine team is maximized when the partnership provides mutual benefits that satisfy design rationales, balance of control, and the nature of autonomy. The distinctively different characteristics and features of humans and machines are likely why they have the potential to work well together, overcoming each other's weaknesses through cooperation, synergy, and interdependence which forms a 'collective intelligence. Trust is bidirectional and two-sided; humans need to trust AI technology, but future AI technology may also need to trust humans.Putting AI in the Critical Loop: Assured Trust and Autonomy in Human-Machine Teams focuses on human-machine trust and 'assured performance and operation in order to realize the potential of autonomy. This book aims to take on the primary challenges of bidirectional trust and performance of autonomous systems, providing readers with a review of the latest literature, the science of autonomy, and a clear path towards the autonomy of human-machine teams and systems. Throughout this book, the intersecting themes of collective intelligence, bidirectional trust, and continual assurance form the challenging and extraordinarily interesting themes which will help lay the groundwork for the audience to not only bridge the knowledge gaps, but also to advance this science to develop better solutions. - Assesses the latest research advances, engineering challenges, and the theoretical gaps surrounding the question of autonomy - Reviews the challenges of autonomy (e.g., trust, ethics, legalities, etc.), including gaps in the knowledge of the science - Offers a path forward to solutions - Investigates the value of trust by humans of HMTs, as well as the bidirectionality of trust, understanding how machines learn to trust their human teammates
Providing a high level of autonomy for a human-machine team requires assumptions that address behavior and mutual trust. The performance of a human-machine team is maximized when the partnership provides mutual benefits that satisfy design rationales, balance of control, and the nature of autonomy. The distinctively different characteristics and features of humans and machines are likely why they have the potential to work well together, overcoming each other's weaknesses through cooperation, synergy, and interdependence which forms a "e;collective intelligence. Trust is bidirectional and two-sided; humans need to trust AI technology, but future AI technology may also need to trust humans.Putting AI in the Critical Loop: Assured Trust and Autonomy in Human-Machine Teams focuses on human-machine trust and "e;assured performance and operation in order to realize the potential of autonomy. This book aims to take on the primary challenges of bidirectional trust and performance of autonomous systems, providing readers with a review of the latest literature, the science of autonomy, and a clear path towards the autonomy of human-machine teams and systems. Throughout this book, the intersecting themes of collective intelligence, bidirectional trust, and continual assurance form the challenging and extraordinarily interesting themes which will help lay the groundwork for the audience to not only bridge the knowledge gaps, but also to advance this science to develop better solutions. - Assesses the latest research advances, engineering challenges, and the theoretical gaps surrounding the question of autonomy- Reviews the challenges of autonomy (e.g., trust, ethics, legalities, etc.), including gaps in the knowledge of the science- Offers a path forward to solutions- Investigates the value of trust by humans of HMTs, as well as the bidirectionality of trust, understanding how machines learn to trust their human teammates
EPUBEPUB (Adobe DRM)
Größe: 19,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Eine praxisorientierte Einführung mit Anwendungen in Oracle, SQL …

von Edwin Schicker

eBook Download (2017)
Springer Vieweg (Verlag)
34,99
Unlock the power of deep learning for swift and enhanced results

von Giuseppe Ciaburro

eBook Download (2024)
Packt Publishing (Verlag)
35,99