Multiscale Methods in Science and Engineering
Springer Berlin (Verlag)
978-3-540-25335-8 (ISBN)
Multiscale Discontinuous Galerkin Methods for Elliptic Problems with Multiple Scales.- Discrete Network Approximation for Highly-Packed Composites with Irregular Geometry in Three Dimensions.- Adaptive Monte Carlo Algorithms for Stopped Diffusion.- The Heterogeneous Multi-Scale Method for Homogenization Problems.- A Coarsening Multigrid Method for Flow in Heterogeneous Porous Media.- On the Modeling of Small Geometric Features in Computational Electromagnetics.- Coupling PDEs and SDEs: The Illustrative Example of the Multiscale Simulation of Viscoelastic Flows.- Adaptive Submodeling for Linear Elasticity Problems with Multiscale Geometric Features.- Adaptive Variational Multiscale Methods Based on A Posteriori Error Estimation: Duality Techniques for Elliptic Problems.- Multipole Solution of Electromagnetic Scattering Problems with Many, Parameter Dependent Incident Waves.- to Normal Multiresolution Approximation.- Combining the Gap-Tooth Scheme with Projective Integration: Patch Dynamics.- Multiple Time Scale Numerical Methods for the Inverted Pendulum Problem.- Multiscale Homogenization of the Navier-Stokes Equation.- Numerical Simulations of the Dynamics of Fiber Suspensions.
Erscheint lt. Verlag | 24.5.2005 |
---|---|
Reihe/Serie | Lecture Notes in Computational Science and Engineering |
Zusatzinfo | XI, 289 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 465 g |
Themenwelt | Mathematik / Informatik ► Informatik |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Technik | |
Schlagworte | algorithm • algorithms • differential equation • Finite Element Method • fluid mechanics • homogenization • mechanical engineering • Mechanics • Modeling • multiscale methods • Natur • Physics • Science |
ISBN-10 | 3-540-25335-1 / 3540253351 |
ISBN-13 | 978-3-540-25335-8 / 9783540253358 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich