Understanding Nuclear Reactors - Dr Brian Hooton

Understanding Nuclear Reactors

Global Warming and the Hydrogen Strategy

(Autor)

Buch | Softcover
176 Seiten
2024
Oxford University Press (Verlag)
978-0-19-890266-9 (ISBN)
31,15 inkl. MwSt
Understanding Nuclear Reactors gives a non-mathematical understanding of how nuclear reactors operate, discussing safety protocols and the lessons to be learned from the incidents at Three Mile Island and Chernobyl. The book covers Global Warming, the alternatives to fossil fuel, such as solar, wind, geothermal and, of course, nuclear.
Understanding Nuclear Reactors provides a non-mathematical understanding of how nuclear reactors operate. It describes the components, the Pressure Vessel, the Pressuriser to control the pressure in a Pressurised Water Reactor (PWR), and the Steam Generator and it also explains how the chain reaction is controlled in the day-to-day operations in the Control Room. What goes on elsewhere in the nuclear fuel cycle, mining, enrichment, fuel manufacturer, spent fuel management, and reprocessing are also covered in detail.

The book tells a set of historical stories about the development of the physics behind reactors and the discovery of fission and explains the hopes for the development of Generation IV reactors. Special attention is given to the safety of reactors and the lessons to be learned from the incidents at Three Mile Island, Browns Ferry, Chernobyl, and Fukushima. Hooton uses a set of stories to explain the invisible hazard of radiation on the human body.

Global warming was the motivation for the book, so Hooton offers a detailed account of alternative energy sources to fossil fuel, solar panels, wind turbines, geothermal, as well as nuclear. He gives a detailed account of all the current developments in nuclear fusion as a future prospect for the production of electricity. The hydrogen strategy is emerging, and may become a revolution, but it is a very subtle partner in the quest for net zero, so he includes a detailed account of how it fits into the plan to defeat Global warming.

Brian Hooton became a Research Fellow in the Nuclear Physics Division at Harwell in 1961. In 1968 he had a sabbatical year at Chalk River, the Atomic Energy of Canada. Upon his return to Harwell, he became a Group Leader. In 1983 he was appointed as the Senior Advisor to the Secretary (SAS) at the London HQ of the UKAEA, where he had very broad responsibilities across the whole of the UKEAE's sites. Hooton retired from the UKAEA in 1991 and set up Nuclear Consultancy Services Ltd offering consultancy services to the nuclear industry.

1. Introduction and Prelude
1.1: Global Warming
1.2: Capacity Factors
1.3: Welcome to the Nuclear Age
1.4: The First Electricity Producing Reactors
1.5: The Prelude
2. Fundamental Nuclear Physics
2.1: The Pauli Exclusion Principle
2.2: Nuclear Forces
2.3: Nuclear Reactions
2.4: Energy and Mass Units
2.5: Photons
2.6: Antimatter, Pair Production, and Annihilation
2.7: Mass Defects, Q Values, and Cross-Sections
2.8: Cross-Sections
2.9: The Discovery of Radioactivity
2.10: The General Characteristics of Radioactivity
2.11: Gamma Decay
2.12: Spontaneous Fission
3. Basic Quantum Theory
3.1: Skip this Chapter if you Wish
3.2: The Uncertainty Principle
3.3: The Theoretical Treatment of Nuclear Physics
3.4: Atomic Spectra and Quantum Numbers
3.5: Sommerfeld's Contribution
3.6: Pauli's Contribution
3.7: Spin and Parity
3.8: Alpha Decay
3.9: Beta Decay and the Story of the Neutrino
3.10: The Discovery of the Neutron
3.11: Quantum Theory and Beyond
4. The Story of E = MC2 and Relativity
4.1: The Unification of Electricity and Magnetism
4.2: Relative Motion
4.3: Einstein's Theory
4.4: Standards of Mass, Length, and Time
5. The Fission Process and the Characteristics of Fission
5.1: The Discovery of Fission
5.2: Niels Bohr and Copenhagen
5.3: The Fission Process
5.4: Neutron Interactions
5.5: The Fate of Gamma Rays
5.6: Fission Fragments
5.7: Delayed Neutrons
5.8: The Energy of Fission
5.9: Decay Heat
5.10: The Chain Reaction
6. Nuclear Reactors in General
6.1: Nuclear Reactor Calculations
6.2: The Growth of the Neutron Population
6.3: The Six Factor Formula
6.4: The Effect of Delayed Neutrons on Reactor Control
6.5: Reactivity
6.6: Monte Carlo Models
6.7: Nuclear Reactor Operations
6.8: Fuel
6.9: Moderators
6.10: Coolants
6.11: Poisons
6.12: Control Poisons
6.13: Unavoidable Poisons
6.14: Burnable Poisons
6.15: Engineering Materials
6.16: The Fast Reactor
6.17: Hybrid Reactors
7. Reactor Operations and Control
7.1: Controlling Reactors to Keep them Safe
7.2: The First Reactors
7.3: Reactor CP1
7.4: Controlling Commercial Reactors
7.5: The Reactor Pressure Vessel
7.6: The Reactor Coolant Pump
7.7: The Pressuriser
7.8: The Steam Generator
7.9: The Boron Loading Loop
7.10: Power Measurement
7.11: The Fuel Temperature Coefficient (FTC)
7.12: The Moderator Temperature Coefficient (MTC)
7.13: The Void Coefficient
7.14: Changes In Steam Demand
7.15: Control Room Operations
8. Safety
8.1: Safety, Risk, and Consequences
8.2: The Regulators
8.3: Decay Heat Removal
8.4: Loss of Coolant
8.5: Passive Safety Measures
8.6: The Windscale Fire
8.7: Brown's Ferry
8.8: Three Mile Island
8.9: Chernobyl 1986
8.10: Problems in the Fukushima Region of Japan
8.11: Safety Overview
8.12: Understanding the Health Hazard of Radiation
9. The Nuclear Fuel Cycle
9.1: The Nuclear Fuel Cycle Definition
9.2: Mining
9.3: Enrichment
9.4: Fuel Fabrication
9.5: Spent Fuel Management
9.6: Spent Fuel Ponds
9.7: Cherenkov Radiation
9.8: Reprocessing
9.9: Nuclear Waste
10. International Treaties and Obligations
10.1: Euratom
10.2: Treaty on the Non-Proliferation of Nuclear Weapons, NPT
10.3: The International Atomic Energy Agency, IAEA
10.4: Nuclear Safeguards
10.5: Obligations
11. The Future of Fission Reactors and Fusion
11.1: The Alternatives to Fossil Fuel
11.2: Generation IV Technology
11.3: The Move to Higher Temperatures
11.4: The Move to Fast Reactors
11.5: The Move to SMRs and AMRs
11.6: Plutonium Breeding
11.7: Thorium Breeding
11.8: New Coolants
11.9: Molten Salts
11.10: New Types of Fuel
11.11: Burning Waste and Using the Minor Actinides as Fuel
11.12: New Reprocessing Technology
11.13: The Economics and Politics of Electricity Generation
11.14: The Utilisation of E = MC2
12. Nuclear Fusion
12.1: The Fusion Process
12.2: Producing Fusion in the Laboratory
12.3: ITER
12.4: MAST and STEP
12.5: The Fuel for Fusion
12.6: The Tritium Breeding Ratio, TBR
12.7: Venture Capital
12.8: The Conclusion on Fusion
13. The Hydrogen Strategy
13.1: The Basic Properties of Hydrogen
13.2: The Production of Hydrogen
13.3: Carbon Capture
13.4: Energy Storage
13.5: New Markets for Hydrogen
13.6: Hydrogen in the Colours of the Rainbow
13.7: The Race to Deliver Net Zero
Free

Erscheinungsdatum
Zusatzinfo 49 line drawings
Verlagsort Oxford
Sprache englisch
Maße 170 x 246 mm
Gewicht 348 g
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Umwelttechnik / Biotechnologie
ISBN-10 0-19-890266-2 / 0198902662
ISBN-13 978-0-19-890266-9 / 9780198902669
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Wegweiser für Elektrofachkräfte

von Gerhard Kiefer; Herbert Schmolke; Karsten Callondann

Buch | Hardcover (2024)
VDE VERLAG
48,00