Practical Guide to Applied Conformal Prediction in Python - Valery Manokhin

Practical Guide to Applied Conformal Prediction in Python

Learn and apply the best uncertainty frameworks to your industry applications

(Autor)

Buch | Softcover
240 Seiten
2023
Packt Publishing Limited (Verlag)
978-1-80512-276-0 (ISBN)
47,35 inkl. MwSt
Elevate your machine learning skills using the Conformal Prediction framework for uncertainty quantification. Dive into unique strategies, overcome real-world challenges, and become confident and precise with forecasting.

Key Features

Master Conformal Prediction, a fast-growing ML framework, with Python applications
Explore cutting-edge methods to measure and manage uncertainty in industry applications
Understand how Conformal Prediction differs from traditional machine learning

Book DescriptionIn the rapidly evolving landscape of machine learning, the ability to accurately quantify uncertainty is pivotal. The book addresses this need by offering an in-depth exploration of Conformal Prediction, a cutting-edge framework to manage uncertainty in various ML applications.
Learn how Conformal Prediction excels in calibrating classification models, produces well-calibrated prediction intervals for regression, and resolves challenges in time series forecasting and imbalanced data. Discover specialised applications of conformal prediction in cutting-edge domains like computer vision and NLP. Each chapter delves into specific aspects, offering hands-on insights and best practices for enhancing prediction reliability. The book concludes with a focus on multi-class classification nuances, providing expert-level proficiency to seamlessly integrate Conformal Prediction into diverse industries. With practical examples in Python using real-world datasets, expert insights, and open-source library applications, you will gain a solid understanding of this modern framework for uncertainty quantification.
By the end of this book, you will be able to master Conformal Prediction in Python with a blend of theory and practical application, enabling you to confidently apply this powerful framework to quantify uncertainty in diverse fields.What you will learn

The fundamental concepts and principles of conformal prediction
Learn how conformal prediction differs from traditional ML methods
Apply real-world examples to your own industry applications
Explore advanced topics - imbalanced data and multi-class CP
Dive into the details of the conformal prediction framework
Boost your career as a data scientist, ML engineer, or researcher
Learn to apply conformal prediction to forecasting and NLP

Who this book is forIdeal for readers with a basic understanding of machine learning concepts and Python programming, this book caters to data scientists, ML engineers, academics, and anyone keen on advancing their skills in uncertainty quantification in ML.

Valeriy Manokhin is the leading expert in the field of machine learning and Conformal Prediction. He holds a Ph.D.in Machine Learning from Royal Holloway, University of London. His doctoral work was supervised by the creator of Conformal Prediction, Vladimir Vovk, and focused on developing new methods for quantifying uncertainty in machine learning models. Valeriy has published extensively in leading machine learning journals, and his Ph.D. dissertation 'Machine Learning for Probabilistic Prediction' is read by thousands of people across the world. He is also the creator of "Awesome Conformal Prediction," the most popular resource and GitHub repository for all things Conformal Prediction.

Table of Contents

Introducing Conformal Prediction
Overview of Conformal Prediction
Fundamentals of Conformal Prediction
Validity and Efficiency of Conformal Prediction
Types of Conformal Predictors
Conformal Prediction for Classification
Conformal Prediction for Regression
Conformal Prediction for Time Series and Forecasting
Conformal Prediction for Computer Vision
Conformal Prediction for Natural Language Processing
Handling Imbalanced Data
Multi-Class Conformal Prediction

Erscheinungsdatum
Vorwort Agus Sudjianto
Verlagsort Birmingham
Sprache englisch
Maße 191 x 235 mm
Themenwelt Informatik Software Entwicklung User Interfaces (HCI)
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik
Technik Maschinenbau
ISBN-10 1-80512-276-2 / 1805122762
ISBN-13 978-1-80512-276-0 / 9781805122760
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Aus- und Weiterbildung nach iSAQB-Standard zum Certified Professional …

von Mahbouba Gharbi; Arne Koschel; Andreas Rausch; Gernot Starke

Buch | Hardcover (2023)
dpunkt Verlag
34,90
Lean UX und Design Thinking: Teambasierte Entwicklung …

von Toni Steimle; Dieter Wallach

Buch | Hardcover (2022)
dpunkt (Verlag)
34,90
Wissensverarbeitung - Neuronale Netze

von Uwe Lämmel; Jürgen Cleve

Buch | Hardcover (2023)
Carl Hanser (Verlag)
34,99