Dynamic Equivalent Modeling of Acoustic Metamaterials
Springer Verlag, Singapore
978-981-19-4373-7 (ISBN)
This book closely revolves around how to conduct equivalent research on artificially fabricated periodic structures. The methods and conclusions presented in this book provide a new theoretical basis for the application of artificial woven periodic structures in the field of low-frequency vibration reduction and noise reduction and are also an innovation in the discipline of vibration and noise control. This book is suitable for undergraduate students, graduate students and teachers in vibration and noise majors in universities, and can also provide references for engineering and technical personnel in related fields.
Nansha Gao is currently Associate Professor in School of Marine Science and Technology, Northwestern Polytechnical University, P. R. China. He received the B.E. degree in process equipment and control engineering from Northwest University, China, in 2010, the Ph.D. degree in mechanical engineering from Xi’an JiaoTong University, China, in 2016. Prof. Gao has published over 40 International SCI. journals; 22 International and Domestic patents; and 3 academic monographs. He presided 8 research funds, including National Natural Science Foundation of China, et al. Prof. Gao’s research interests includes materials physics, sound wave control, and acoustic metamaterial design. Jie Deng serves as Associate Professor in Northwestern Polytechnical University. He received the PhD degree from the School of Engineering, Universitat Ramon Llull, Spain, in 2020, and won the title of excellent doctoral dissertation (Cum Laude). In 2021, he received the second PhD degree from the School of Mechanical and Transportation Engineering, Chongqing University, China. He has authored and coauthored over 20 journal papers. He mainly studies the vibration and noise control, bending wave manipulation and vibration energy harvesting of acoustic black hole structures, as well as the theoretical research and Structural design of underwater and air vibration and noise control.
Chapter 1. Introduction.- Chapter 2. Basic theory of acoustic metamaterials and dynamic equivalent inverse problem solving theory.- Chapter 3. Theoretical model for solving inverse problem of dynamic equivalent medium of periodic beam and bar structures.- Chapter 4. Theoretical model for inverse problem solving of dynamic equivalent medium of periodic thin plate structures.- Chapter 5. Study on vibration characteristics of gradient bar based on dynamic equivalent medium inverse problem solving theoretical model.- Chapter 6. Study on low-frequency band gap mechanism of multi-layer slit tube structure based on acoustoelectric analog equivalent model.
Erscheinungsdatum | 19.10.2023 |
---|---|
Zusatzinfo | 23 Illustrations, color; 67 Illustrations, black and white; X, 176 p. 90 illus., 23 illus. in color. |
Verlagsort | Singapore |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Mechanik |
Naturwissenschaften ► Physik / Astronomie ► Optik | |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Maschinenbau | |
Schlagworte | acoustic metamaterials • Acoustoelectric analogy • band structure • dispersion relation • Dynamic Equivalence • Gradient bar construction • Inverse problem solving • Periodic sheet construction • phononic crystal • wave equation |
ISBN-10 | 981-19-4373-7 / 9811943737 |
ISBN-13 | 978-981-19-4373-7 / 9789811943737 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich