Stability-Constrained Optimization for Modern Power System Operation and Planning (eBook)

eBook Download: PDF
2023 | 1. Auflage
496 Seiten
Wiley (Verlag)
978-1-119-84887-5 (ISBN)

Lese- und Medienproben

Stability-Constrained Optimization for Modern Power System Operation and Planning -  Yuan Chi,  Yan Xu,  Heling Yuan
Systemvoraussetzungen
103,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Stability-Constrained Optimization for Modern Power System Operation and Planning

Comprehensive treatment of an aspect of stability constrained operations and planning, including the latest research and engineering practices

Stability-Constrained Optimization for Modern Power System Operation and Planning focuses on the subject of power system stability. Unlike other books in this field, which focus mainly on the dynamic modeling, stability analysis, and controller design for power systems, this book is instead dedicated to stability-constrained optimization methodologies for power system stability enhancement, including transient stability-constrained power system dispatch and operational control, and voltage stability-constrained dynamic VAR Resources planning in the power grid.

Authored by experts with established track records in both research and industry, Stability-Constrained Optimization for Modern Power System Operation and Planning covers three parts:

  • Overview of power system stability, including definition, classification, phenomenon, mathematical models and analysis tools for stability assessment, as well as a review of recent large-scale blackouts in the world
  • Transient stability-constrained optimal power flow (TSC-OPF) and transient stability constrained-unit commitment (TSC-UC) for power system dispatch and operational control, including a series of optimization model formulations, transient stability constraint construction and extraction methods, and efficient solution approaches
  • Optimal planning of dynamic VAR Resources (such as STATCOM and SVC) in power system for voltage stability enhancement, including a set of voltage stability indices, candidate bus selection methods, multi-objective optimization model formulations, and high-quality solution approaches

Stability-Constrained Optimization for Modern Power System Operation and Planning provides the latest research findings to scholars, researchers, and postgraduate students who are seeking optimization methodologies for power system stability enhancement, while also offering key practical methods to power system operators, planners, and optimization algorithm developers in the power industry.

Yan Xu obtained B.E. and M.E. degrees from South China University of Technology, China, and the Ph.D. from University of Newcastle, Australia, in 2008, 2011, and 2013, respectively. He conducted postdoctoral research with the University of Sydney Postdoctoral Fellowship, and then joined Nanyang Technological University (NTU) with the Nanyang Assistant Professorship. He is now an Associate Professor at the School of Electrical and Electronic Engineering, and a Cluster Director at the Energy Research Institute, Nanyang Technological University, Singapore (ERI@N). His research interests include power system stability, microgrid, and data analytics for smart grid applications. He is an Editor for IEEE Trans. Smart Grid and IEEE Trans. Power Systems.

Yuan Chi received B.E. degree from Southeast University, Nanjing, China, in 2009, and the M.E. degree from Chongqing University, Chongqing, China, in 2012, and the Ph.D. degree from Nanyang Technological University, Singapore, in 2021. From 2012 to 2017, he worked as an Electrical Engineer of Power System Planning consecutively with State Grid Chongqing Electric Power Research Institute and Chongqing Economic and Technological Research Institute. He is currently a Research Associate with Chongqing University. His research interests include planning, resilience, and voltage stability of power systems.

Heling Yuan received B.E., M.Sc., and Ph.D. degrees from North China Electric Power University, Beijing, China, and the University of Manchester, and Nanyang Technological University (NTU), Singapore, in 2016, 2017, and 2022, respectively. She is currently a Research Fellow at Rolls-Royce @ NTU Corporate Lab, Singapore. Her research interests include modeling, optimization, stability analysis and control of power systems.


Stability-Constrained Optimization for Modern Power System Operation and Planning Comprehensive treatment of an aspect of stability constrained operations and planning, including the latest research and engineering practices Stability-Constrained Optimization for Modern Power System Operation and Planning focuses on the subject of power system stability. Unlike other books in this field, which focus mainly on the dynamic modeling, stability analysis, and controller design for power systems, this book is instead dedicated to stability-constrained optimization methodologies for power system stability enhancement, including transient stability-constrained power system dispatch and operational control, and voltage stability-constrained dynamic VAR Resources planning in the power grid. Authored by experts with established track records in both research and industry, Stability-Constrained Optimization for Modern Power System Operation and Planning covers three parts: Overview of power system stability, including definition, classification, phenomenon, mathematical models and analysis tools for stability assessment, as well as a review of recent large-scale blackouts in the world Transient stability-constrained optimal power flow (TSC-OPF) and transient stability constrained-unit commitment (TSC-UC) for power system dispatch and operational control, including a series of optimization model formulations, transient stability constraint construction and extraction methods, and efficient solution approaches Optimal planning of dynamic VAR Resources (such as STATCOM and SVC) in power system for voltage stability enhancement, including a set of voltage stability indices, candidate bus selection methods, multi-objective optimization model formulations, and high-quality solution approaches Stability-Constrained Optimization for Modern Power System Operation and Planning provides the latest research findings to scholars, researchers, and postgraduate students who are seeking optimization methodologies for power system stability enhancement, while also offering key practical methods to power system operators, planners, and optimization algorithm developers in the power industry.

Yan Xu obtained B.E. and M.E. degrees from South China University of Technology, China, and the Ph.D. from University of Newcastle, Australia, in 2008, 2011, and 2013, respectively. He conducted postdoctoral research with the University of Sydney Postdoctoral Fellowship, and then joined Nanyang Technological University (NTU) with the Nanyang Assistant Professorship. He is now an Associate Professor at the School of Electrical and Electronic Engineering, and a Cluster Director at the Energy Research Institute, Nanyang Technological University, Singapore (ERI@N). His research interests include power system stability, microgrid, and data analytics for smart grid applications. He is an Editor for IEEE Trans. Smart Grid and IEEE Trans. Power Systems. Yuan Chi received B.E. degree from Southeast University, Nanjing, China, in 2009, and the M.E. degree from Chongqing University, Chongqing, China, in 2012, and the Ph.D. degree from Nanyang Technological University, Singapore, in 2021. From 2012 to 2017, he worked as an Electrical Engineer of Power System Planning consecutively with State Grid Chongqing Electric Power Research Institute and Chongqing Economic and Technological Research Institute. He is currently a Research Associate with Chongqing University. His research interests include planning, resilience, and voltage stability of power systems. Heling Yuan received B.E., M.Sc., and Ph.D. degrees from North China Electric Power University, Beijing, China, and the University of Manchester, and Nanyang Technological University (NTU), Singapore, in 2016, 2017, and 2022, respectively. She is currently a Research Fellow at Rolls-Royce @ NTU Corporate Lab, Singapore. Her research interests include modeling, optimization, stability analysis and control of power systems.

Erscheint lt. Verlag 18.5.2023
Reihe/Serie IEEE Press Series on Power Engineering
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Schlagworte electric power systems • Elektrische Energietechnik • Energie • Energy • Erneuerbare Energien • renewable energy • Smart Grid
ISBN-10 1-119-84887-3 / 1119848873
ISBN-13 978-1-119-84887-5 / 9781119848875
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 21,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99
200 Aufgaben zum sicheren Umgang mit Quellen ionisierender Strahlung

von Jan-Willem Vahlbruch; Hans-Gerrit Vogt

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
34,99