Proceedings of the 4th International Symposium on Plasma and Energy Conversion -

Proceedings of the 4th International Symposium on Plasma and Energy Conversion (eBook)

ISPEC 2022, 14-16 Oct, Foshan, China
eBook Download: PDF
2023 | 1. Auflage
XII, 538 Seiten
Springer Nature Singapore (Verlag)
978-981-99-1576-7 (ISBN)
Systemvoraussetzungen
171,19 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

These proceedings highlight the fundamental researches and up-to-data developments on energy conversion and high-voltage application by means of low temperature and atmospheric pressure plasma. In recent years, plasma-assisted energy conversion gains increasing attention as an alternative to thermal-catalysis or electro-catalysis. These proceedings discuss and exchange cutting-edge scientific innovations and technological advances in fields like plasma-enabled synthesis of chemicals and fuels, plasma-enabled the environmental clean-up, plasma-enabled catalysis treatment, in-situ probing of plasma-catalyst interactions and its high-voltage applications, which show great potentials in industrial demands like CO2 hydrogenation, CHreforming and nitrogen fixation, plasma deposition, chemical synthesis, VOC abatement and high-voltage insulation.

This collection of papers presents the main applications of plasma-induced energy conversion and high-voltage discharge in the form of separate chapters, including cutting-edge studies on conversion technology, complex mechanism simulation, in-situ detection and converged applications by artificial intelligence.  

These proceedings are suitable for researchers engaged in fields like plasma-catalysis, discharge diagnosis and modelling, chemical modelling and high-voltage applications.

The major topics covered in the conference proceedings are:

1)     Advanced plasma-catalysis conversion technology;

2)     Advanced in-situ discharge diagnosis technology;

3)     Advanced in-situ plasma-catalysis characterization;

4)     Multi-scale or innovative modelling technology;

5)     High-voltage discharge and application.



Dong Dai received the B.Sc. degree and Ph.D. degree in electrical engineering from Xi'an Jiaotong University, Xi'an, China, respectively, in 1998 and 2003. From 2003 to 2005, he worked in the Department of Electronic and Information Engineering, Hong Kong Polytechnic University, as a research associate. From 2005 to 2009, he became an associate professor at the School of Electrical Engineering, Xi'an Jiaotong University. In 2009, he moved to the School of Electric Power, South China University of Technology, Guangzhou, China, as an associate professor. Since 2013, he has been a professor with the same university. His current research interests include fundamental theory on gas discharge and low-temperature plasmas, scientific computation integrating physics, and data in engineering and science.

 

Cheng Zhang received the Ph.D. degree in electrical engineering from the University of Chinese Academy of Sciences, Beijing, China, in 2011. Since 2011, he has been with the Institute of Electrical Engineering, Chinese Academy of Sciences, where he became a professor in 2022. From 2015 to 2016, he was a visiting scholar with the NonEquilibrium Thermodynamics Laboratory, Department of Mechanical and Aerospace Engineering, Ohio State University, Columbus, OH, USA. His current research interests include gas discharge and non-thermal applications. He is the IET fellow, an IEEE senior member, and a member of the IEEE Nuclear and Plasma Sciences Society and the Dielectrics and Electrical Insulation Society of IEEE.

 

Zhi Fang received the B.S., M.S., and Ph.D. degrees in electrical engineering from Xi'an Jiaotong University, Xi'an, China, in 1999, 2002, and 2005, respectively. He is currently a professor at Nanjing Tech University, Nanjing, China. His current research interests include atmospheric pressure gas discharge plasmas, high-voltage insulation, and the applications of atmospheric pressure plasma for materials surface processing. He is a member of the Dielectrics and Electrical Insulation Society of the IEEE and the Chinese Society of Electrical Engineering.

 

Xinpei Lu is currently a professor at Huazhong University of Science and Technology, Wuhan, China. He has been working with non-thermal plasmas and their biomedical applications such as decontamination, aerosol disinfection, and plasma for cancer treatment, for over 25 years. His works have been cited over 7,000 times, leading to an H-index of 44. For his achievements in non-thermal plasmas, he received a number of awards such as the first Early Career Award of Plasma Medicine from the International Plasma Medicine Society (IPMS), the ChangJiang Scholar Award from Department of Education of China, and the Outstanding Young Investigator Award from National Natural Science Foundation of China


These proceedings highlight the fundamental researches and up-to-data developments on energy conversion and high-voltage application by means of low temperature and atmospheric pressure plasma. In recent years, plasma-assisted energy conversion gains increasing attention as an alternative to thermal-catalysis or electro-catalysis. These proceedings discuss and exchange cutting-edge scientific innovations and technological advances in fields like plasma-enabled synthesis of chemicals and fuels, plasma-enabled the environmental clean-up, plasma-enabled catalysis treatment, in-situ probing of plasma-catalyst interactions and its high-voltage applications, which show great potentials in industrial demands like CO2 hydrogenation, CH4 reforming and nitrogen fixation, plasma deposition, chemical synthesis, VOC abatement and high-voltage insulation.This collection of papers presents the main applications of plasma-induced energy conversion and high-voltage discharge in the form of separate chapters, including cutting-edge studies on conversion technology, complex mechanism simulation, in-situ detection and converged applications by artificial intelligence.  These proceedings are suitable for researchers engaged in fields like plasma-catalysis, discharge diagnosis and modelling, chemical modelling and high-voltage applications.The major topics covered in the conference proceedings are:1)     Advanced plasma-catalysis conversion technology;2)     Advanced in-situ discharge diagnosis technology;3)     Advanced in-situ plasma-catalysis characterization;4)     Multi-scale or innovative modelling technology;5)     High-voltage discharge and application.
Erscheint lt. Verlag 21.4.2023
Reihe/Serie Springer Proceedings in Physics
Zusatzinfo XII, 538 p. 412 illus., 355 illus. in color.
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Plasmaphysik
Naturwissenschaften Physik / Astronomie Theoretische Physik
Technik Elektrotechnik / Energietechnik
Schlagworte Artificial Intelligence • conference proceedings • High Voltage Discharge • non-thermal plasma • plasma catalysis • Plasma medicine • renewable energy
ISBN-10 981-99-1576-7 / 9819915767
ISBN-13 978-981-99-1576-7 / 9789819915767
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 80,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich