Procedural Content Generation via Machine Learning (eBook)

An Overview
eBook Download: PDF
2022 | 1st ed. 2022
XIII, 238 Seiten
Springer International Publishing (Verlag)
978-3-031-16719-5 (ISBN)

Lese- und Medienproben

Procedural Content Generation via Machine Learning - Matthew Guzdial, Sam Snodgrass, Adam J. Summerville
Systemvoraussetzungen
64,19 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book surveys current and future approaches to generating video game content with machine learning or Procedural Content Generation via Machine Learning (PCGML).  Machine learning is having a major impact on many industries, including the video game industry.  PCGML addresses the use of computers to generate new types of content for video games (game levels, quests, characters, etc.) by learning from existing content.  The authors illustrate how PCGML is poised to transform the video games industry and provide the first ever beginner-focused guide to PCGML.  This book features an accessible introduction to machine learning topics, and readers will gain a broad understanding of currently employed PCGML approaches in academia and industry.  The authors provide guidance on how best to set up a PCGML project and identify open problems appropriate for a research project or thesis.  This book is written with machine learning and games novices in mind and includes discussions of practical and ethical considerations along with resources and guidance for starting a new PCGML project.





Matthew Guzdial, Ph.D, is an Assistant Professor in the Computing Science Department at the University of Alberta and a Canada CIFAR AI Chair at the Alberta Machine Intelligence Institute (Amii). His research focuses on the intersection of machine learning, creativity, and human-centered computing. He is a recipient of an Early Career Researcher Award from NSERC, a Unity Graduate Fellowship, and two best conference paper awards from the International Conference on Computational Creativity. His work has been featured in the BBC, WIRED, Popular Science, and Time.

Sam Snodgrass is an AI researcher at modl.ai, a game AI company focused on bringing state of the art game AI research from academia to the games industry. His research focuses on making PCGML more accessible to non-ML experts. This work includes making PCGML systems more adaptable and self-reliant, reducing the authorial burden of creating training data through domain blending, and building tools that allow for easier interactions with the underlying PCGML systems and their outputs. Through his work at modl.ai he has deployed several mixed-initiative PCGML tools into game studios to assist with level design and creation.

Adam Summerville is the lead AI engineer for Procedural Content Generation at The Molasses Flood, a CD Projekt studio. Prior to this, he was an assistant professor at California State Polytechnic University, Pomona. His research focuses on the intersection of artificial intelligence in games with a high-level goal of enabling experiences that would not be possible without artificial intelligence. This research ranges from procedural generation of levels, social simulation for games, and the use of natural language processing for gameplay. His work has been shown at the SF MoMA and SlamDance and won the audience choice award at IndieCade.


Erscheint lt. Verlag 6.12.2022
Reihe/Serie Synthesis Lectures on Games and Computational Intelligence
Synthesis Lectures on Games and Computational Intelligence
Zusatzinfo XIII, 238 p. 82 illus., 63 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Grafik / Design
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik Bauwesen
Schlagworte Artificial Intelligence • Computational Creativity • Computer Science • Game Design • machine learning • PCGML • Procedural content generation • video games
ISBN-10 3-031-16719-8 / 3031167198
ISBN-13 978-3-031-16719-5 / 9783031167195
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 19,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
24,90