Handbook of Thermosetting Foams, Aerogels, and Hydrogels -

Handbook of Thermosetting Foams, Aerogels, and Hydrogels

From Fundamentals to Advanced Applications
Buch | Softcover
684 Seiten
2024
Elsevier - Health Sciences Division (Verlag)
978-0-323-99452-1 (ISBN)
259,95 inkl. MwSt
Handbook of Thermosetting Foams, Aerogels, and Hydrogels: From Fundamentals to Advanced Applications presents the latest knowledge on the preparation, characterization, properties, and applications of thermoset foams, aerogels, and hydrogels.
This book begins by introducing thermoset foams, aerogels, and hydrogels, their characteristics, current applications, potential for further development, and environmental impact. This is followed by three sections, each focusing on foams, aerogels, and hydrogels developed from a specifi c thermosetting polymer category, covering polyurethane, epoxy resins, and formaldehyde. In each section, detailed coverage guides the reader through the preparation, structure, characterization, properties, processing, and applications of foams, aerogels, and hydrogels based on that material, as well as addressing key challenges in terms of design, processing, and implementation, and possible solutions.
This is a valuable resource for researchers and advanced students with an interest in thermoset lightweight materials, across the disciplines of polymer science, chemistry, nanotechnology, materials science, and engineering. This is also of interest to R&D professionals, engineers, and scientists working with foams, hydrogels, and aerogels for a range of applications and industries.

Prof. Prasanth Raghavan is a Professor and Head of the Department of Polymer Science and Rubber Technology, CUSAT, India, and Visiting Professor at Gyeongsang National University, Republic of Korea, Scotland’s Rural College (SRUC), UK, and Mahatma Gandhi University (MGU), Kerala, India. He is indexed as top 2% Scientist in the World. He has around 8500 citations and an h-index of 50. Dr. M. S. Sreekala is a Associate Professor at the School of Chemical Sciences. She is also serving as the Director of the School of Polymer Science and Technology and Joint Director of the School of Nanoscience and Technology and International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University (MGU), Kerala, India. Dr. Lakshmipriya Ravindran is a Assistant Professor at the School of Energy Materials, at the Mahatma Gandhi University in India. She has published a good number of scientific articles in the high-impact factor international journals and one of her articles is indexed as “Top Downloaded Article” of the year. Dr. Ankitha Menon is a Prime Minister’s Research Fellow (PMRF) at the Department of Chemistry, Indian Institute of Technology (IIT), Palakkad, Kerala, India. Her dedication to research is evident in her extensive publication record, with 20 international journal publications and numerous presentations at international conferences.

Section I: Introduction
1. Foams, aerogels and hydrogels: The state of the art and prospective technologies.
2. Opportunities and versatile applications of thermoset foams, aerogels, and hydrogels: Current state of the art and anticipated developments
3. Environmental impact and recycling technologies of thermoset resin, foams, aerogels and hydrogels

Section II: Polyurethane-based Foams, Aerogels, and Hydrogels
4. Polyurethane (PU): Structure, properties, and applications
5. Polyurethane foam: The foaming process and the effect of process parameters on properties
6. Polyurethane nanocomposite foams: Preparation, properties and applications
7. Polyurethane based hydrogels synthesis, properties, and modifications
8. Polyurethane-based aerogels: Preparation, properties, and applications
9. Polyurethane-based foam and aerogels for automotive and aerospace applications
9. Shape memory polyurethane-based foams and aerogels
10. Challenges in design, processing and use of PU foam/aerogel materials
Section III: Epoxy-based foams, aerogels, and hydrogels
11. Epoxy resins: Synthesis, structure, and properties
12. Epoxy-based hydrogels: Network design, characterization, and applications
13. Epoxy: Foaming processes and the effect of process parameters on properties of epoxy foam
14. Epoxy foams reinforcing with nanomaterials: Synthesis, mechanical properties and applications
15. Shape memory epoxy foam-defense and aerospace applications

Section IV: Formaldehyde-based foams, aerogels, and hydrogels
16. Phenolic resin: Preparation, structure, properties, and applications
17. Phenolic foams: Foaming processes and applications
18. Phenolic foams: Structure-property relationships and insulating properties
19. Phenolic aerogels: Preparation, properties, and applications
20. Phenolic foams reinforced with nanomaterials: Preparation, properties, and applications
21. Melamine-formaldehyde hydrogels, foams, and aerogels: Preparation, properties and applications
22. Urea formaldehyde foams, aerogels and hydrogels: Preparation, properties and applications
23. Carbon foams derived from thermosetting polymers: Preparation, properties and applications
24. Carbon foams derived from phenol and melamine formaldehyde thermosetting polymers: Preparation, properties, and applications
25. Carbon foams derived from thermosetting epoxy, polyimides and cellulosic polymers: Environmental and electrical or electrochemical applications

Erscheinungsdatum
Verlagsort Philadelphia
Sprache englisch
Maße 191 x 235 mm
Gewicht 1330 g
Themenwelt Medizin / Pharmazie Physiotherapie / Ergotherapie Orthopädie
Technik Maschinenbau
Technik Medizintechnik
Technik Umwelttechnik / Biotechnologie
ISBN-10 0-323-99452-0 / 0323994520
ISBN-13 978-0-323-99452-1 / 9780323994521
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Spiraldynamik - programmierte Therapie für konkrete Resultate

von Christian Larsen

Buch | Hardcover (2021)
Thieme (Verlag)
105,00