Reinforcement Learning bei der Bewegungssteuerung eines selbstlernenden physischen Roboters. Chancen und Grenzen bei der Nutzung künstlicher Intelligenz (eBook)

(Autor)

eBook Download: PDF
2022 | 1. Auflage
107 Seiten
GRIN Verlag
978-3-346-72095-5 (ISBN)

Lese- und Medienproben

Reinforcement Learning bei der Bewegungssteuerung eines selbstlernenden physischen Roboters. Chancen und Grenzen bei der Nutzung künstlicher Intelligenz -  Felix Wessel
Systemvoraussetzungen
39,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Bachelorarbeit aus dem Jahr 2021 im Fachbereich Ingenieurwissenschaften - Maschinenbau, Note: 1,5, Fachhochschule Bielefeld, Sprache: Deutsch, Abstract: Im Rahmen der vorliegenden Ausarbeitung soll an einem konkreten physischen - aber sehr einfach gehaltenen - Roboter untersucht werden, inwieweit Reinforcement Learning zur Steuerung eines solchen Roboters genutzt werden kann und welche Möglichkeiten und Probleme sich daraus ergeben könnten. Aufbauend auf diesem grundlegenden Verständnis könnten dann weitere Untersuchungen zur Übertragbarkeit auf komplexere und praktisch nutzbare Anwendungen erfolgen. Die diversen Verfahren des maschinellen Lernens, die im alltäglichen Sprachgebrauch häufig unter dem Schlagwort 'künstliche Intelligenz' zusammengefasst werden, erleben aktuell eine sehr starke mediale Präsenz, welche die entsprechende Technologie und vielmehr die zum Teil spektakulären Anwendungsfälle auch einer breiten Bevölkerungsschicht außerhalb von Industrie und Technik bekannt macht. Es kann dabei schnell der Eindruck entstehen, dass es sich bei künstlicher Intelligenz um neueste technologische Entwicklungen handelt, die sogar dazu in der Lage sind, die menschliche Arbeitskraft in naher Zukunft komplett oder zumindest teilweise zu ersetzen. In den zurückliegenden fünf bis zehn Jahren beschleunigte sich die Entwicklung rasant und mit der Verfügbarkeit immer leistungsfähigerer und preisgünstigerer Hardware haben sich eine Vielzahl von Anwendungsfällen entwickelt, die im heutigen Alltagsleben selbstverständlich genutzt werden. In der jüngsten Vergangenheit haben selbstlernende Systeme eine starke mediale Präsenz erreicht. Derartige Systeme, wie beispielsweise DeepMinds AlphaZero, die auf sogenanntem Reinforcement Learning, also bestärkendem Lernen, basieren, sind dazu in der Lage, komplexe Brettspiele, wie zum Beispiel Schach oder Go, auf einem Niveau zu beherrschen, welches das aller menschlichen Experten übertrifft. Dies zum Teil dazu noch ohne jemals umfassend darin angeleitet worden zu sein oder das Regelwerk vorab zu kennen. Die Systeme haben sich dieses Können eigenständig durch Versuch und Irrtum angeeignet. Ebenfalls erweitern sich die Einsatzgebiete dieser Verfahren zunehmend. Eine Vielzahl der Anwendungen findet aktuell jedoch in virtuellen Umgebungen und Simulationen statt, die eine idealtypische und stark vereinfachte Umwelt repräsentieren, die vielfach an physischen Maschinen nicht zu finden ist. Eine Übertragung der Erkenntnisse und Algorithmen in die Realität kann dadurch oftmals nur schwer vorgenommen werden.
Erscheint lt. Verlag 12.9.2022
Verlagsort München
Sprache deutsch
Themenwelt Technik Maschinenbau
Schlagworte Artificial Intelligence • Informatik • Ingenieurinformatik • Künstliche Intelligenz • Maschinenbau • Python • Raspberry Pi • Reinforcement Learning • Roboter • Robotersteuerung • selbstlernende Maschine • selbstlernender Roboter • Steuerung
ISBN-10 3-346-72095-0 / 3346720950
ISBN-13 978-3-346-72095-5 / 9783346720955
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Ohne DRM)
Größe: 11,6 MB

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich