Remote Sensing Intelligent Interpretation for Mine Geological Environment - Weitao Chen, Xianju Li, Lizhe Wang

Remote Sensing Intelligent Interpretation for Mine Geological Environment (eBook)

From Land Use and Land Cover Perspective
eBook Download: PDF
2022 | 1st ed. 2022
XII, 246 Seiten
Springer Nature Singapore (Verlag)
978-981-19-3739-2 (ISBN)
Systemvoraussetzungen
171,19 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book examines the theory and methods of remote sensing intelligent interpretation based on deep learning. Based on geological and environmental effects on mines, this book constructs a set of systematic mine remote sensing datasets focusing on the multi-level task with the system of 'target detection?scene classification?semantic segmentation.' 

Taking China's Hubei Province as an example, this book focuses on the following four aspects: 1. Development of a multiscale remote sensing dataset of the mining area, including mine target remote sensing dataset, mine (including non-mine areas) remote sensing scene dataset, and semantic segmentation remote sensing dataset of mining land cover. The three datasets are the basis of intelligent interpretation based on deep learning. 2. Research on mine target remote sensing detection method based on deep learning. 3. Research on remote sensing scene classification method of mine and non-mine areas based on deep learning. 4. Research on the fine-scale classification method of mining land cover based on semantic segmentation.

The book is a valuable reference both for scholars, practitioners and as well as graduate students who are interested in mining environment research.




Dr. Weitao Chen (Member, IEEE) is a professor at the School of Computer Science, China Univ. of Geosciences (CUG). He received B.E. from Jiaozuo Institute of Technology in 2003, M.E from in 2006 and Doctor from China Univ. of Geosciences in 2012. He has published more than 30 peer-reviewed technical papers in international journals. His main research interests include machine learning and remote sensing of environment. Prof. Chen is a member of IEEE and served as a reviewer of several international journals. He was awarded the land and resources science and Technology Progress Award (second prize in 2019), and the science and technology Award (second prize) of China command and control society (second prize in 2020). He was awarded 'cradle plan' talent project of China University of Geosciences and the 'Chenguang plan' talent project of Youth Science and technology in Wuhan, Hubei Province

Dr. Xianju Li received the B.S., M.S., and Ph.D. degrees from China University of Geoscience, Wuhan, China, in 2009, 2012, and 2016, respectively. Since 2016, he has been an associate professor in the School of Computer Science, China University of Geosciences. He has published more than 10 peer-reviewed technical papers in international journals. His main research fields include remote sensing image processing and analysis, computer vision, and machine learning. He was awarded the land and resources science and Technology Progress Award (second prize in 2019).



This book examines the theory and methods of remote sensing intelligent interpretation based on deep learning. Based on geological and environmental effects on mines, this book constructs a set of systematic mine remote sensing datasets focusing on the multi-level task with the system of "e;target detection?scene classification?semantic segmentation."e; Taking China's Hubei Province as an example, this book focuses on the following four aspects: 1. Development of a multiscale remote sensing dataset of the mining area, including mine target remote sensing dataset, mine (including non-mine areas) remote sensing scene dataset, and semantic segmentation remote sensing dataset of mining land cover. The three datasets are the basis of intelligent interpretation based on deep learning. 2. Research on mine target remote sensing detection method based on deep learning. 3. Research on remote sensing scene classification method of mine and non-mine areas based on deep learning. 4. Research on the fine-scale classification method of mining land cover based on semantic segmentation.The book is a valuable reference both for scholars, practitioners and as well as graduate students who are interested in mining environment research.
Erscheint lt. Verlag 18.8.2022
Zusatzinfo XII, 246 p. 110 illus., 89 illus. in color.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Naturwissenschaften Geowissenschaften Geografie / Kartografie
Naturwissenschaften Geowissenschaften Geologie
Technik Elektrotechnik / Energietechnik
Technik Umwelttechnik / Biotechnologie
Schlagworte deep learning on mining • machine learning on mining • mine dataset • Mine environment • remote sensing on mining • scene classification • semantic segmentation • target detection
ISBN-10 981-19-3739-7 / 9811937397
ISBN-13 978-981-19-3739-2 / 9789811937392
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 10,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
18,68