The Monte Carlo Method for Semiconductor Device Simulation - Carlo Jacoboni, Paolo Lugli

The Monte Carlo Method for Semiconductor Device Simulation

Buch | Hardcover
X, 359 Seiten
1989 | 1989
Springer Wien (Verlag)
978-3-211-82110-7 (ISBN)
160,49 inkl. MwSt
The application of the Monte Carlo method to the simulation of semiconductor devices is presented. A review of the physics of transport in semiconductors is given, followed by an introduction to the physics of semiconductor devices. The Monte Carlo algorithm is discussed in great details, and specific applications to the modelling of semiconductor devices are given. A comparison with traditional simulators is also presented.

1 Introduction.- References.- 2 Charge Transport in Semiconductors.- 2.1 Electron Dynamics.- 2.2 Energy Bands.- 2.3 Scattering Mechanisms.- 2.4 Scattering Probabilities.- 2.5 Transport Equation.- 2.6 Linear Response and the Relaxation Time Approximation.- 2.7 Diffusion, Noise, and Velocity Autocorrelation Function.- 2.8 Hot Electrons.- 2.9 Transient Transport.- 2.10 The Two-dimensional Electron Gas.- References.- 3 The Monte Carlo Simulation.- 3.1 Fundamentals.- 3.2 Definition of the Physical System.- 3.3 Initial Conditions.- 3.4 The Free Flight, Self Scattering.- 3.5 The Scattering Process.- 3.6 The Choice of the State After Scattering.- 3.7 Collection of Results for Steady-State Phenomena.- 3.8 The Ensemble Monte Carlo (EMC).- 3.9 Many Particle Effects.- 3.10 Monte Carlo Simulation of the 2DEG.- 3.11 Special Topics.- 3.12 Variance-reducing Techniques.- 3.13 Comparison with Other Techniques.- References.- 4 Review of Semiconductor Devices.- 4.1 Introduction.- 4.2 Historical Evolution of Semiconductor Devices.- 4.3 Physical Basis of Semiconductor Devices.- 4.4 Comparison of Semiconductor Devices.- References.- 5 Monte Carlo Simulation of Semiconductor Devices.- 5.1 Introduction.- 5.2 Geometry of the System.- 5.3 Particle-Mesh Force Calculation.- 5.4 Poisson Solver and Field Distribution.- 5.5 The Monte Carlo Simulation of Semiconductor Devices.- References.- 6 Applications.- 6.1 Introduction.- 6.2 Diodes.- 6.3 MESFET.- 6.4 HEMT and Heterojunction Real Space Transfer Devices.- 6.5 Bipolar Transistor.- 6.6 HBT.- 6.7 MOSFET and MISFET.- 6.8 Hot Electron Transistors.- 6.9 Permeable Base Transistor.- 6.10 Comparison with Traditional Simulators.- References.- Appendix A. Numerical Evaluation of Some Integrals of Interest.- References.- Appendix B. Generation of Random Numbers.- References.

Erscheint lt. Verlag 30.10.1989
Reihe/Serie Computational Microelectronics
Zusatzinfo X, 359 p.
Verlagsort Vienna
Sprache englisch
Maße 156 x 234 mm
Gewicht 802 g
Themenwelt Technik Elektrotechnik / Energietechnik
Schlagworte field-effect transistor • Halbleiterelektronik • Heterojunction Bipolar Transistor • Integrated circuit • ion-sensitive field effect transistor • metal insulator semiconductur field-effect transis • metal insulator semiconductur field-effect transistor • metal oxide semiconductur field-effect transistor • metal semiconductor field-effect transistor • micro-alloy transistor, MAT • Monte-Carlo-Methode • Physics • Simulation • Transistor • Transport
ISBN-10 3-211-82110-4 / 3211821104
ISBN-13 978-3-211-82110-7 / 9783211821107
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Wegweiser für Elektrofachkräfte

von Gerhard Kiefer; Herbert Schmolke; Karsten Callondann

Buch | Hardcover (2024)
VDE VERLAG
48,00