Genetic Programming Theory and Practice XVIII -

Genetic Programming Theory and Practice XVIII

Buch | Hardcover
212 Seiten
2022 | 1st ed. 2022
Springer Verlag, Singapore
978-981-16-8112-7 (ISBN)
160,49 inkl. MwSt
This book, written by the foremost international researchers and practitioners of genetic programming (GP), explores the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP.  In this year’s edition, the topics covered include many of the most important issues and research questions in the field, such as opportune application domains for GP-based methods, game playing and co-evolutionary search, symbolic regression and efficient learning strategies, encodings and representations for GP, schema theorems, and new selection mechanisms. The book includes several chapters on best practices and lessons learned from hands-on experience. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.

Wolfgang Banzhaf is a professor in the Department of Computer Science and Engineering at Michigan State University.

Chapter 1. Finding Simple Solutions to Multi-Task Visual Reinforcement Learning Problems with Tangled Program Graphs.- Chapter 2. Grammar-based Vectorial Genetic Programming for Symbolic Regression.- Chapter 3. Grammatical Evolution Mapping for Semantically-Constrained Genetic Programming.- Chapter 4. What can phylogenetic metrics tell us about useful diversity in evolutionary algorithms?.- Chapter 5. An Exploration of Exploration: Measuring the ability of lexicaseselection to find obscure pathways to optimality.- Chapter 6. Feature Discovery with Deep Learning Algebra Networks.- Chapter 7. Back To The Future — Revisiting OrdinalGP & Trustable Models After a Decade.- Chapter 8. Fitness First.- Chapter 9. Designing Multiple ANNs with Evolutionary Development: Activity Dependence.- Chapter 10. Evolving and Analyzing modularity with GLEAM (Genetic Learning by Extraction and Absorption of Modules).- Chapter 11. Evolution of the Semiconductor Industry, and the Start of X Law.

Erscheinungsdatum
Reihe/Serie Genetic and Evolutionary Computation
Zusatzinfo 62 Illustrations, color; 12 Illustrations, black and white; XIV, 212 p. 74 illus., 62 illus. in color.
Verlagsort Singapore
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Theorie / Studium Algorithmen
Mathematik / Informatik Mathematik Analysis
Medizin / Pharmazie Physiotherapie / Ergotherapie Orthopädie
Technik Medizintechnik
Schlagworte Artificial Evolution • Data Analysis • Evolution of Models • genetic programming • Genetic Programming Applications • Genetic Programming Theory • machine learning • program induction • Symbolic Regression
ISBN-10 981-16-8112-0 / 9811681120
ISBN-13 978-981-16-8112-7 / 9789811681127
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
29,99
Interlingua zur Gewährleistung semantischer Interoperabilität in der …

von Josef Ingenerf; Cora Drenkhahn

Buch | Softcover (2023)
Springer Fachmedien (Verlag)
32,99