EEG Signal Processing and Machine Learning (eBook)

eBook Download: EPUB
2021 | 2. Auflage
Wiley (Verlag)
978-1-119-38693-3 (ISBN)

Lese- und Medienproben

EEG Signal Processing and Machine Learning -  Jonathon A. Chambers,  Saeid Sanei
Systemvoraussetzungen
100,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Explore cutting edge techniques at the forefront of electroencephalogram research and artificial intelligence from leading voices in the field

The newly revised Second Edition of EEG Signal Processing and Machine Learning delivers an inclusive and thorough exploration of new techniques and outcomes in electroencephalogram (EEG) research in the areas of analysis, processing, and decision making about a variety of brain states, abnormalities, and disorders using advanced signal processing and machine learning techniques. The book content is substantially increased upon that of the first edition and, while it retains what made the first edition so popular, is composed of more than 50% new material.

The distinguished authors have included new material on tensors for EEG analysis and sensor fusion, as well as new chapters on mental fatigue, sleep, seizure, neurodevelopmental diseases, BCI, and psychiatric abnormalities. In addition to including a comprehensive chapter on machine learning, machine learning applications have been added to almost all the chapters. Moreover, multimodal brain screening, such as EEG-fMRI, and brain connectivity have been included as two new chapters in this new edition.

Readers will also benefit from the inclusion of:

  • A thorough introduction to EEGs, including neural activities, action potentials, EEG generation, brain rhythms, and EEG recording and measurement
  • An exploration of brain waves, including their generation, recording, and instrumentation, including abnormal EEG patterns and the effects of ageing and mental disorders
  • A treatment of mathematical models for normal and abnormal EEGs
  • Discussions of the fundamentals of EEG signal processing, including statistical properties, linear and nonlinear systems, frequency domain approaches, tensor factorization, diffusion adaptive filtering, deep neural networks, and complex-valued signal processing

    Perfect for biomedical engineers, neuroscientists, neurophysiologists, psychiatrists, engineers, and students and researchers in the above areas, the Second Edition of EEG Signal Processing and Machine Learning will also earn a place in the libraries of undergraduate and postgraduate Biomedical Engineering and Neuroscience, including Epileptology, students.

    Saeid Sanei, PhD, DIC, FBCS, is Professor of Signal Processing and Machine Learning at Nottingham Trent University, UK, and a Visiting Professor at Imperial College London, UK. He received his doctorate in Biomedical Signal and Image Processing from Imperial College London in 1991. He is an internationally renowned expert in signal processing, biomedical signal processing, and pattern recognition.

    Jonathon A Chambers, FREng, FIEEE, DSc (Imperial), is Emeritus Professor of Signal and Information Processing within the College of Science and Engineering at the University of Leicester, UK. His research interests are focused upon adaptive signal processing and machine learning and their application in biomedicine, communications, defense, and navigation systems.


    EEG Signal Processing and Machine Learning Explore cutting edge techniques at the forefront of electroencephalogram research and artificial intelligence from leading voices in the field The newly revised Second Edition of EEG Signal Processing and Machine Learning delivers an inclusive and thorough exploration of new techniques and outcomes in electroencephalogram (EEG) research in the areas of analysis, processing, and decision making about a variety of brain states, abnormalities, and disorders using advanced signal processing and machine learning techniques. The book content is substantially increased upon that of the first edition and, while it retains what made the first edition so popular, is composed of more than 50% new material. The distinguished authors have included new material on tensors for EEG analysis and sensor fusion, as well as new chapters on mental fatigue, sleep, seizure, neurodevelopmental diseases, BCI, and psychiatric abnormalities. In addition to including a comprehensive chapter on machine learning, machine learning applications have been added to almost all the chapters. Moreover, multimodal brain screening, such as EEG-fMRI, and brain connectivity have been included as two new chapters in this new edition. Readers will also benefit from the inclusion of: A thorough introduction to EEGs, including neural activities, action potentials, EEG generation, brain rhythms, and EEG recording and measurement An exploration of brain waves, including their generation, recording, and instrumentation, abnormal EEG patterns and the effects of ageing and mental disorders A treatment of mathematical models for normal and abnormal EEGs Discussions of the fundamentals of EEG signal processing, including statistical properties, linear and nonlinear systems, frequency domain approaches, tensor factorization, diffusion adaptive filtering, deep neural networks, and complex-valued signal processing Perfect for biomedical engineers, neuroscientists, neurophysiologists, psychiatrists, engineers, students and researchers in the above areas, the Second Edition of EEG Signal Processing and Machine Learning will also earn a place in the libraries of undergraduate and postgraduate students studying Biomedical Engineering, Neuroscience and Epileptology.
  • Saeid Sanei, PhD, DIC, FBCS, is Professor of Signal Processing and Machine Learning at Nottingham Trent University, UK, and a Visiting Professor at Imperial College London, UK. He received his doctorate in Biomedical Signal and Image Processing from Imperial College London in 1991. He is an internationally renowned expert in signal processing, biomedical signal processing, and pattern recognition. Jonathon A. Chambers, FREng, FIEEE, DSc (Imperial), is Emeritus Professor of Signal and Information Processing within the College of Science and Engineering at the University of Leicester, UK. His research interests are focused upon adaptive signal processing and machine learning and their application in biomedicine, communications, defense, and navigation systems.

    List of Abbreviations


    3D
    Three‐dimensional
    AASM
    American Academic of Sleep Medicine
    ACC
    Anterior cingulate cortex
    ACE
    Addenbrooke’s cognitive examination
    ACR
    Accuracy of responses
    ACT
    Adaptive chirplet transform
    AD
    Alzheimer’s disease
    ADC
    Analogue‐to‐digital converter
    ADD
    AD patients with mild dementia
    ADD
    Attention‐deficit disorder
    ADHD
    Attention‐deficit hyperactivity disorder
    AE
    Approximate entropy
    AE
    Autoencoder
    AEP
    Audio evoked potentials
    AfC
    Affective computing
    Ag–AgCl
    Silver–silver chloride
    AI
    Artificial intelligence
    AIC
    Akaike information criterion
    ALE
    Adaptive line enhancer
    ALF
    Adaptive standardized LORETA/FOCUSS
    ALM
    Augmented Lagrange multipliers method
    ALS
    Alternating least squares
    ALS
    Amyotrophic lateral sclerosis
    AMDF
    Average magnitude difference function
    AMI
    Average mutual information
    AMM
    Augmented mixing matrix
    ANN
    Artificial neural network
    AOD
    Auditory oddball
    AP
    Action potential
    ApEn
    Approximate entropy
    APGARCH
    Asymmetric power GARCH
    AR
    Autoregressive modelling
    ARMA
    Autoregressive moving average
    ASCOT
    Adaptive slope of wavelet coefficient counts over various thresholds
    ASD
    Autism spectrum disorder
    ASDA
    American Sleep Disorders Association
    AsI
    Asymmetry index
    ASR
    Automatic speaker recognition
    ASS
    Average artefact subtraction
    AUC
    Area under the curve
    BAS
    Behavioural activation system
    BBCI
    Berlin BCI
    BBI
    Brain‐to‐brain interface
    BCG
    Ballistocardiogram
    BCI
    Brain–computer interfacing
    BDS
    Brock, Dechert, and Scheinkman
    BEM
    Boundary‐element method
    BF
    Beamformer
    BGD
    Bootstrapped geometric difference
    BIC
    Bayesian information criterion
    BIS
    Behavioural inhibition system
    BIS
    Bispectral index
    BMI
    Brain–machine interfacing
    BOLD
    Blood oxygenation level dependent
    BP
    Bereitschaftspotential
    BP
    Bipolar disorder
    Brain/MINDS
    Brain Mapping by Integrated Neurotechnologies for Disease Studies
    BSE
    Blind source extraction
    BSR
    Burst‐suppression ratio
    BSS
    Blind source separation
    bvFTD
    Behaviour variant frontotemporal dementia
    Ca
    Calcium
    CAE
    Contractive autoencoder
    CANDECOMP
    Canonical decomposition
    CBD
    Corticobasal degeneration
    CBF
    Cerebral blood flow
    CCA
    Canonical correlation analysis
    CEEMDAN
    Complete ensemble EMD with adaptive noise
    CF
    Characteristic function
    CF
    Cognitive fluctuation
    CFS
    Chronic fatigue syndrome
    Cl
    Chloride
    CDLSA
    Coupled dictionary learning with sparse approximation
    CDR
    Current distributed‐source reconstruction
    CI
    Covariance intersection
    cICA
    Constrained ICA
    CIT
    Concealed information test
    CJD
    Creutzfeldt–Jakob disease
    CMA
    Circumplex model of affects
    CMTF
    Coupled matrix and tensor factorizations
    CMOS
    Complementary metal oxide semiconductor
    CNN
    Convolutional neural network
    CNS
    Central nervous system
    CORCONDIA
    Core consistency diagnostic
    CoSAMP
    Compressive sampling matching pursuit
    CPS
    Cyber‐physical systems
    CRBPF
    Constrained Rao‐Blackwellised particle filter
    CSA
    Central sleep apnoea
    CSD
    Current source density
    CSF
    Cerebrospinal fluid
    CSP
    Common spatial patterns
    CT
    Computerized tomography
    DAE
    Denoising autoencoder
    DARPA
    Defence Advanced Research Projects Agency
    DASM
    Differential asymmetry
    DBS
    Deep brain stimulation
    DC
    Direct current
    DCAU
    Differential Causality
    DCM
    Dynamic causal modelling
    DCT
    Discrete cosine transform
    dDTF
    Direct directed transfer function
    DE
    Differential entropy
    DeconvNet
    Deconvolutional ANN
    DFT
    Discrete Fourier transform
    DFV
    Dominant frequency variability
    DHT
    Discrete Hermite transform
    DL
    Diagonal loading
    DLE
    Digitally linked ears
    DM
    Default mode
    DMN
    Default mode network
    DNN
    Deep neural network
    DPF
    Differential pathlength factor
    DSM
    Diagnostic and Statistical Manual
    DSTCLN
    Deep spatio‐temporal convolutional bidirectional long short‐term memory network
    DT
    Decision tree
    DTF
    Directed transfer function
    DTI
    Diffusion tensor imaging
    DUET
    Degenerate unmixing estimation technique
    DWT
    Discrete wavelet transform
    ECD
    Electric current dipole
    ECD
    Equivalent current dipole
    ECG
    Electrocardiogram
    ECG
    Electrocardiography
    ECoG
    Electrocorticogram
    ECT
    Electroconvulsive therapy
    ED
    Error distance
    EEG
    Electroencephalogram
    EEG
    Electroencephalography
    EEMD
    Ensemble empirical mode decomposition
    EGARCH
    Exponential GARCH
    EGG
    Electrogastrography
    EKG
    Electrocardiogram
    EKG
    Electrocardiography
    EM
    Expectation maximization
    EMD
    Empirical mode decomposition
    EMG
    Electromyogram
    EMG
    Electromyography
    ENet
    Efficient neural network
    EOG
    Electro‐oculogram
    EP
    Evoked potential
    EPN
    Early posterior negativity
    EPSP
    Excitatory post‐synaptic potential
    ERBM
    Entropy rate bound minimization
    ERD
    Event‐related desynchronization
    ERN
    Error‐related negativity
    ERP
    Event‐related potential
    ERS
    Event‐related synchronization
    FA
    Factor analysis
    FC
    Functional connectivity
    FCM
    Fuzzy c‐means
    FD
    Fractal dimension
    FDA
    Food and Drug Administration
    FDispEn
    Fluctuation‐based dispersion entropy
    FDR
    False detection rate
    FEM
    Finite element model
    FFNN
    Feed forward neural network
    FET
    Field‐effect transistor
    fICA
    Fast independent component analysis
    FIR
    Finite impulse response
    fMRI
    Functional magnetic resonance imaging
    FMS
    Fibromyalgia syndrome
    FN
    False negative
    fNIRS
    Functional near‐infrared spectroscopy
    FO
    Foramen ovale
    FOBSS
    First order blind source separation
    FOCUSS
    Focal underdetermined system solver
    FOOBI
    Fourth order cumulant based blind identification
    FP
    False positive
    FRDA
    Frontal rhythmic delta activity
    FRN
    Feedback related negativity
    FSOR
    Feature selection with orthogonal regression
    FSP
    Falsely detected source number (position)
    FTD
    Frontotemporal dementia
    FuzEn
    Fuzzy entropy
    GA
    Genetic algorithm
    GAD
    General anxiety disorder
    GAN
    Generative adversarial network
    GARCH
    Generalized autoregressive conditional heteroskedasticity
    GARCH‐M
    GARCH‐in‐mean
    GC
    Granger causality
    GCN
    Graph convolutional network
    GFNN
    Global false nearest neighbours
    GJR‐GARCH
    Glosten, Jagannathan, & Runkle GARCH
    GLM
    General linear model
    GMM
    Gaussian mixture model
    GP
    Gaussian process
    GP‐LR
    Gaussian process logistic regression
    GSCCA
    Group sparse canonical correlation...

    Erscheint lt. Verlag 23.9.2021
    Sprache englisch
    Themenwelt Technik Elektrotechnik / Energietechnik
    Schlagworte automatic sleep scoring • BCI • biosignal AI • biosignal artificial intelligence • biosignal machine learning • Biosignal processing • brain computer interfacing • EEG AI • EEG artificial intelligence • EEG-fMRI • EEG machine learning • EEG machine learning applications • EEG machine learning techniques • EEG-NIRS • EEG pattern recognition • Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • magnetoencephalography • Maschinelles Lernen • MEG • mental fatigue analysis • Neurodevelopmental diseases • Numerical Methods & Algorithms • Numerische Methoden u. Algorithmen • psychiatric diseases • Signal Processing • Signalverarbeitung • sleep abnormalities
    ISBN-10 1-119-38693-4 / 1119386934
    ISBN-13 978-1-119-38693-3 / 9781119386933
    Haben Sie eine Frage zum Produkt?
    EPUBEPUB (Adobe DRM)
    Größe: 76,4 MB

    Kopierschutz: Adobe-DRM
    Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
    Details zum Adobe-DRM

    Dateiformat: EPUB (Electronic Publication)
    EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

    Systemvoraussetzungen:
    PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
    eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
    Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
    Geräteliste und zusätzliche Hinweise

    Buying eBooks from abroad
    For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

    Mehr entdecken
    aus dem Bereich
    Ressourcen und Bereitstellung

    von Martin Kaltschmitt; Karl Stampfer

    eBook Download (2023)
    Springer Fachmedien Wiesbaden (Verlag)
    66,99