Intelligent Data Analysis for COVID-19 Pandemic -

Intelligent Data Analysis for COVID-19 Pandemic (eBook)

eBook Download: PDF
2021 | 1st ed. 2021
XIX, 370 Seiten
Springer Singapore (Verlag)
978-981-16-1574-0 (ISBN)
Systemvoraussetzungen
171,19 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book presents intelligent data analysis as a tool to fight against COVID-19 pandemic. The intelligent data analysis includes machine learning, natural language processing, and computer vision applications to teach computers to use big data-based models for pattern recognition, explanation, and prediction. These functions are discussed in detail in the book to recognize (diagnose), predict, and explain (treat) COVID-19 infections, and help manage socio-economic impacts. It also discusses primary warnings and alerts; tracking and prediction; data dashboards; diagnosis and prognosis; treatments and cures; and social control by the use of intelligent data analysis. It provides analysis reports, solutions using real-time data, and solution through web applications details.



Dr. Niranjanamurthy M is Assistant Professor, Department of Computer Applications, M S Ramaiah Institute of Technology, Bangalore, Karnataka, India. He completed Ph.D. in Computer Science at JJTU, Rajasthan (2016); M.Phil. in Computer Science at VMU, Salem (2009); Masters in Computer Applications at Visvesvaraiah Technological University, Belgaum, Karnataka (2007);   BCA from Kuvempu University 2004 with University 5th Rank. He has 10 years of teaching experience and 2 years of industry experience as Software Engineer. He has published books in Scholars Press Germany and CRC Press. He also published 56 research papers and filed 12 patents. Currently, he is guiding four Ph.D. research scholars in the areas of data science, edge computing, ML, and networking. He is Reviewer of 22 international journals and Series Editor in CRC Press and Scrivener Publishing. He has received best research journal reviewer and researcher awards. He is a member of IEEE, CSTA, IAENG, and INSC. His areas of interest are data science, ML, edge computing, software engineering, web services, cloud computing, and networking.

 

Dr. Siddhartha Bhattacharyya [LFOSI, LFISRD, FIET (UK), FIETE, FIE(I), SMIEEE, SMIETI, SMACM, LMCRSI, LMCSI, LMISTE, LMIUPRAI, LMCEGR, LMICCI, LMALI, MIRSS, MIAENG, MCSTA, MIAASSE, MIDES, MISSIP, MSDIWC] is currently serving as Professor in the Department of Computer Science and Engineering of Christ University, Bangalore. He is Co-Author of 5 books and Co-Editor of 75 books and has more than 300 research publications in international journals and conference proceedings to his credit. He has got two PCTs to his credit. He is Associate Editor of several reputed journals including Applied Soft Computing, IEEE Access, Evolutionary Intelligence, and IET Quantum Communications. He is Editor of International Journal of Pattern Recognition Research and  Founding Editor-in-Chief of International Journal of Hybrid Intelligence, Inderscience. His research interests include hybrid intelligence, pattern recognition, multimedia data processing, social networks, and quantum computing. 

 

Dr. Neeraj Kumar is currently engaged with the Department of Information Technology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow (India). He has completed his Doctorate in Information Technology from BBAU, Lucknow, in March 2020. He has completed his basic education from Government Polytechnic, Budaun, and then graduation and PG from UPTU, Lucknow, and IIIT Allahabad in the year 2005 and 2010, respectively. After graduation, he was appointed as Lecturer in BSACET, Mathura, while after PG, appointed as Assistant Professor in various institutes of RTU and UPTU. He has published more than two dozen research articles in reputed international journals and conferences. He has published few patents related to computer science and disaster management. He has published few authored and edited books with the publishers of national repute. He has research interests in topics related to real-life problem, including disaster management, IoT, big data, soft computing, cyber security, and quantum cryptography.


This book presents intelligent data analysis as a tool to fight against COVID-19 pandemic. The intelligent data analysis includes machine learning, natural language processing, and computer vision applications to teach computers to use big data-based models for pattern recognition, explanation, and prediction. These functions are discussed in detail in the book to recognize (diagnose), predict, and explain (treat) COVID-19 infections, and help manage socio-economic impacts. It also discusses primary warnings and alerts; tracking and prediction; data dashboards; diagnosis and prognosis; treatments and cures; and social control by the use of intelligent data analysis. It provides analysis reports, solutions using real-time data, and solution through web applications details.
Erscheint lt. Verlag 22.6.2021
Reihe/Serie Algorithms for Intelligent Systems
Algorithms for Intelligent Systems
Zusatzinfo XIX, 370 p. 156 illus., 105 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Statistik
Medizin / Pharmazie Medizinische Fachgebiete
Studium Querschnittsbereiche Infektiologie / Immunologie
Technik
Schlagworte big data and analytics • Corona Virus Disease • Covid-19 • Information Through Web Applications • Intelligent Data Analysis • machine learning • Pandemic
ISBN-10 981-16-1574-8 / 9811615748
ISBN-13 978-981-16-1574-0 / 9789811615740
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 12,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
17,43