Patterns of Synchrony in Complex Networks of Adaptively Coupled Oscillators (eBook)

(Autor)

eBook Download: PDF
2021 | 1st ed. 2021
XVI, 203 Seiten
Springer International Publishing (Verlag)
978-3-030-74938-5 (ISBN)

Lese- und Medienproben

Patterns of Synchrony in Complex Networks of Adaptively Coupled Oscillators - Rico Berner
Systemvoraussetzungen
160,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The focus of this thesis is the interplay of synchrony and adaptivity in complex networks. Synchronization is a ubiquitous phenomenon observed in different contexts in physics, chemistry, biology, neuroscience, medicine, socioeconomic systems, and engineering. Most prominently, synchronization takes place in the brain, where it is associated with cognitive capacities like learning and memory, but is also a characteristic of neurological diseases like Parkinson and epilepsy. Adaptivity is common in many networks in nature and technology, where the connectivity changes in time, i.e., the strength of the coupling is continuously adjusted depending upon the dynamic state of the system, for instance synaptic neuronal plasticity in the brain. This research contributes to a fundamental understanding of various synchronization patterns, including hierarchical multifrequency clusters, chimeras and other partial synchronization states. After a concise survey of the fundamentals of adaptive and complex dynamical networks and synaptic plasticity, in the first part of the thesis the existence and stability of cluster synchronization in globally coupled adaptive networks is discussed for simple paradigmatic phase oscillators as well as for a more realistic neuronal oscillator model with spike-timing dependent plasticity. In the second part of the thesis the interplay of adaptivity and connectivity is investigated for more complex network structures like nonlocally coupled rings, random networks, and multilayer systems. Besides presenting a plethora of novel, sometimes intriguing patterns of synchrony, the thesis makes a number of pioneering methodological advances, where rigorous mathematical proofs are given in the Appendices. These results are of interest not only from a fundamental point of view, but also with respect to challenging applications in neuroscience and technological systems.

Rico Berner is a mathematician and physicist. In his research he combines ideas and techniques from both disciplines to provide a fundamental understanding of complex dynamical systems. He studied physics and mathematics at TU Berlin. Apart from his studies, Rico Berner has worked with Siemens AG on applications of machine learning algorithms and has taught mathematics and physics to students in several courses. Before starting his doctoral studies, he has been the coordinator of school activities at the Matheon (TU Berlin) and has engaged in public events of Stiftung Rechnen. Rico Berner received the Dr. rer. nat. degree from TU Berlin. His research interests include the analysis of nonlinear dynamical systems, synchronization phenomena in complex networks and the modeling of neuronal and technological systems.
Erscheint lt. Verlag 31.5.2021
Reihe/Serie Springer Theses
Springer Theses
Zusatzinfo XVI, 203 p. 51 illus., 44 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik
Naturwissenschaften Physik / Astronomie Theoretische Physik
Technik Bauwesen
Schlagworte adaptive networks • Collective Phenomena in Complex Networks • dynamics of networks • Multiplex Networks • neuronal networks • Phase Oscillator • Solitary States • synaptic plasticity • Synchronization on Complex Networks
ISBN-10 3-030-74938-X / 303074938X
ISBN-13 978-3-030-74938-5 / 9783030749385
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 8,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Theoretische Physik I

von Peter Reineker; Michael Schulz; Beatrix M. Schulz …

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
48,99
Theoretische Physik I

von Peter Reineker; Michael Schulz; Beatrix M. Schulz …

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
48,99