Semiconductor Devices and Technologies for Future Ultra Low Power Electronics
CRC Press (Verlag)
978-1-032-06161-0 (ISBN)
This book covers the fundamentals and significance of 2-D materials and related semiconductor transistor technologies for the next-generation ultra low power applications. It provides comprehensive coverage on advanced low power transistors such as NCFETs, FinFETs, TFETs, and flexible transistors for future ultra low power applications owing to their better subthreshold swing and scalability. In addition, the text examines the use of field-effect transistors for biosensing applications and covers design considerations and compact modeling of advanced low power transistors such as NCFETs, FinFETs, and TFETs. TCAD simulation examples are also provided.
FEATURES
Discusses the latest updates in the field of ultra low power semiconductor transistors
Provides both experimental and analytical solutions for TFETs and NCFETs
Presents synthesis and fabrication processes for FinFETs
Reviews details on 2-D materials and 2-D transistors
Explores the application of FETs for biosensing in the healthcare field
This book is aimed at researchers, professionals, and graduate students in electrical engineering, electronics and communication engineering, electron devices, nanoelectronics and nanotechnology, microelectronics, and solid-state circuits.
D. Nirmal is presently working as an Associate Professor and Head in the Department of Electronics and Communication engineering. His research interests includes Nanoelectronics, 1D/2D Materials, Carbon nanotubes, GaN Technology, Device and Circuit Simulation – GSL, Sensors, Nanoscale device design and modelling. J. Ajayan is an Associate Professor in the Department of Electronics and Communication Engineering at SR University, Telangana, India. His areas of interest are microelectronics, semiconductor devices, nanotechnology, RF integrated circuits and photovoltaics. Patrick Fay is currently a Professor with the Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA. He established the High Speed Circuits and Devices Laboratory, Notre Dame, and oversaw the design, construction, and commissioning of the 9000-ft2 class 100 cleanroom housed in Stinson-Remick Hall at Notre Dame. He has served as the Director of this facility since 2003.
1. An Introduction to Nanoscale CMOS Technology Transistor. 2. High Performance Tunnel Field Effect Transistor (TFET) for Future Low Power Applications. 3. Ultra Low Power III-V Tunnel Field Effect Transistors. 4. Performance Analysis of Carbon Nanotube and Graphene Tunnel Field Effect Transistors. 5. Characterization of Silicon FinFETs Under Nanoscale Dimension. 6. Germenium or SiGe FinFETs for Enhanced Performance in Low Power Applications. 7. Switching Performance Analysis of III-V FinFET. 8. Negative Capacitance Field Effect Transistors to Address the Fundamental Limitations in Technology Scaling. 9. Recent Trends in Compact Modeling of Negative Capacitance Field Effect Transistors. 10. Fundamentals of 2D Materials. 11. Two-Dimensional Transition Metal Dichalcogenide (TMD) Materials in Field Effect Transistor (FET) Devices for Low Power Applications.
Erscheinungsdatum | 13.12.2021 |
---|---|
Zusatzinfo | 20 Tables, black and white; 150 Line drawings, black and white; 15 Halftones, black and white; 165 Illustrations, black and white |
Verlagsort | London |
Sprache | englisch |
Maße | 156 x 234 mm |
Gewicht | 720 g |
Themenwelt | Technik ► Elektrotechnik / Energietechnik |
ISBN-10 | 1-032-06161-8 / 1032061618 |
ISBN-13 | 978-1-032-06161-0 / 9781032061610 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich