Advanced PEDOT Thermoelectric Materials
Woodhead Publishing (Verlag)
978-0-12-821550-0 (ISBN)
Advanced PEDOT Thermoelectric Materials summarizes current progress and the challenges of PEDOT thermoelectric materials, while clarifying directions for future development. This book provides a comprehensive overview of chemical, physical, and technical information about this organic thermoelectric polymer. The authors also give details about the theoretical basis of PEDOT, including preparation and characterization, and its development as a high-performance thermoelectric material.
Fengxing Jiang received a PhD in Physical Chemistry from Soochow University, Suzhou, China in 2013. He is a Professor of Organic Electronics at the Department of Physics at Jiangxi Science and Technology Normal University, Jiangxi, China. His research interests center mainly on the use of PEDOT-based conducting polymers for application in organic electronics and bioelectronics. Congcong Liu received a PhD from the School of Materials Science and Engineering at Tongji University, Shanghai, China in 2019. He is a Professor of Organic Composites at the Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Jiangxi, China. His research interests include the design and synthesis of conducting polymers/two-dimensional inorganic composites and their applications in energy conversion and energy storage. Jingkun Xu received a PhD in polymer chemistry and physics from Tsinghua University, Beijing, China in 2003. He is a professor of polymer chemistry at the Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University and has led the Organic Electronics Group since 2004. His research interests include the design and synthesis of conducting polymers for application in thermoelectric conversion, electrochromics, supercapacitors, biochemical sensors, and fuel cells.
1. Short history of thermoelectric conjugated PEDOT development 2. PEDOT preparation, morphology, and electronic structure 3. Thermoelectric properties of PEDOTs 4. Thermoelectric transport and PEDOT dependence 5. Optimizing the thermoelectric performance of PEDOTs 6. Thermoelectric PEDOTs: Derivatives, analogues, and copolymers 7. PEDOT-based thermoelectric nanocomposites/hybrids 8. Thermoelectric PEDOT measurement techniques 9. Flexible and wearable thermoelectric PEDOT devices 10. Challenges and perspectives
Erscheinungsdatum | 05.11.2021 |
---|---|
Reihe/Serie | Woodhead Publishing Series in Electronic and Optical Materials |
Zusatzinfo | Approx. 120 illustrations (120 in full color); Illustrations |
Sprache | englisch |
Maße | 152 x 229 mm |
Gewicht | 1000 g |
Themenwelt | Naturwissenschaften ► Chemie ► Physikalische Chemie |
Technik ► Maschinenbau | |
ISBN-10 | 0-12-821550-X / 012821550X |
ISBN-13 | 978-0-12-821550-0 / 9780128215500 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich