Socio-Inspired Optimization Methods for Advanced Manufacturing Processes - Apoorva Shastri, Aniket Nargundkar, Anand J. Kulkarni

Socio-Inspired Optimization Methods for Advanced Manufacturing Processes (eBook)

eBook Download: PDF
2020 | 1st ed. 2021
X, 128 Seiten
Springer Singapore (Verlag)
978-981-15-7797-0 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book discusses comprehensively the advanced manufacturing processes, including illustrative examples of the processes, mathematical modeling, and the need to optimize associated parameter problems. In addition, it describes in detail the cohort intelligence methodology and its variants along with illustrations, to help readers gain a better understanding of the framework. The theoretical and statistical rigor is validated by comparing the solutions with evolutionary algorithms, simulation annealing, response surface methodology, the firefly algorithm, and experimental work. Lastly, the book critically reviews several socio-inspired optimization methods. 



?Apoorva S Shastri holds a Master of Technology (M.Tech) in VLSI Design and Bachelor of Engineering in Electronics & Product Design Technology from R.T.M.N.U, Nagpur. She has also done Diploma from the Govt. Polytechnic, Nagpur. She worked as a guest faculty at Centre for Development of Advanced Computing (C-DAC), Pune. Currently, she is Assistant Professor at the Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune. She is also pursuing PhD in Optimization Algorithms and Applications from Symbiosis International (Deemed University). Her research interests include development of optimization algorithms, VLSI design, multi-objective optimization, continuous, discrete and combinatorial optimization, complex systems, probability collectives and self-organizing systems. Apoorva developed socio-inspired optimization methodologies such as Multi-Cohort Intelligence Algorithm and Expectation Algorithm. Apoorva has published several research papers in peer-reviewed journals, chapters and conferences.

Aniket Nargundkar holds a Master of Technology (MTech) in Manufacturing Technology from National Institute of Technology, Tiruchirappalli, India, and a Bachelor of Engineering from Shivaji University, India. He has worked as Manufacturing Technologist with Danfoss Industries Pvt Ltd, providing technological and process innovation solutions and executing it with an aim to improve market competitiveness and achieve operational excellence. He has worked in Denmark, Poland, and Mexico over a span of two years, together with professionals from Technology and Innovation, Lean Manufacturing, Production, Procurement & Quality in cross-functional teams, on Manufacturing, Supply Chain Problems & opportunities at Danfoss plants. Currently, he is an Assistant Professor at the Mechanical Engineering Department at Symbiosis Institute of Technology, Symbiosis International (Deemed University) (SIU). He is also pursuing a PhD in Optimization Algorithms and Applications from SIU. His research interests include optimization algorithms and applications, multi-objective optimization, continuous, discrete and combinatorial optimization, multi-agent systems, complex systems, Manufacturing Processes and Technology, Supply Chain Analytics, Mechatronics, and Automation. Aniket has published numerous research papers in top quality peer-reviewed journals, chapters, and international conferences.

Anand J Kulkarni holds a PhD in Distributed Optimization from Nanyang Technological University, Singapore, MS in Artificial Intelligence from University of Regina, Canada, Bachelor of Engineering from Shivaji University, India and Diploma from the Board of Technical Education, Mumbai. He worked as a Research Fellow on a Cross-border Supply-chain Disruption project at Odette School of Business, University of Windsor, Canada. Anand was Head of the Mechanical Engineering Department at Symbiosis International (Deemed University) (SIU), Pune, India for three years. Currently, he is Associate Professor at the Symbiosis Center for Research and Innovation, SIU. His research interests include optimization algorithms, multi-objective optimization, continuous, discrete and combinatorial optimization, multi-agent systems, complex systems, probability collectives, swarm optimization, game theory, self-organizing systems and fault-tolerant systems. Anand pioneered socio-inspired optimization methodologies such as Cohort Intelligence, Ideology Algorithm, Expectation Algorithm, Socio Evolution & Learning Optimization algorithm. He is the founder and chairman of the Optimization and Agent Technology (OAT) Research Lab and has published over 50 research papers in peer-reviewed journals, chapters and conferences along with 3 authored and 5 edited books.

This book discusses comprehensively the advanced manufacturing processes, including illustrative examples of the processes, mathematical modeling, and the need to optimize associated parameter problems. In addition, it describes in detail the cohort intelligence methodology and its variants along with illustrations, to help readers gain a better understanding of the framework. The theoretical and statistical rigor is validated by comparing the solutions with evolutionary algorithms, simulation annealing, response surface methodology, the firefly algorithm, and experimental work. Lastly, the book critically reviews several socio-inspired optimization methods. 
Erscheint lt. Verlag 11.8.2020
Reihe/Serie Springer Series in Advanced Manufacturing
Springer Series in Advanced Manufacturing
Zusatzinfo X, 128 p. 45 illus., 22 illus. in color.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Technik Bauwesen
Technik Maschinenbau
Schlagworte Abrasive Water Jet Machining (AWJM) • Artificial Intelligence • Cohort Intelligence • Electric Discharge Machining • Genetic algorithms • Micro Drilling • micro machining • optimization algorithms • Socio-Inspired Metaheuristics • Socio-inspired Optimization
ISBN-10 981-15-7797-8 / 9811577978
ISBN-13 978-981-15-7797-0 / 9789811577970
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99