Effective Methods for Integrated Process Planning and Scheduling (eBook)

, (Autoren)

eBook Download: PDF
2020 | 1st ed. 2020
XVI, 462 Seiten
Springer Berlin Heidelberg (Verlag)
978-3-662-55305-3 (ISBN)

Lese- und Medienproben

Effective Methods for Integrated Process Planning and Scheduling - Xinyu Li, Liang Gao
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book summarizes a series of research work on integrated process planning and scheduling (IPPS) done by the authors, focusing on discussing the properties, novel solution methods and applications of process planning, scheduling and IPPS problems under different machining environments. It is a valuable reference resource for teachers, students and researchers working in the fields of engineering, management science and other related disciplines.

Xinyu Li is an Associate Professor at the School of Mechanical Science and Engineering, Huazhong University of Science and Technology, China. He is a member of the State Key Laboratory of Digital Manufacturing Equipment and Technology (DMET) and a member of the Operations Research Society of China, Artificial Intelligence Society of Hubei, Operations Research Society of Hubei and Mechanical Engineering Society of Hubei. He was the guest co-editor of the special issues of International Journal of Advancements in Computing Technology on 'Particle Swarm Optimization and Applications' in 2011 and the International Journal of Advanced Manufacturing Technology on 'Process Planning and Production Scheduling in Sustainable Manufacturing' in 2012. His main research areas are integration of process planning and scheduling, process parameter optimization, approximation algorithms and flexible job shop scheduling. He has published 65 papers in international journals and at conferences. He has won a number of awards, including the 'Science & Technology Award for Youth' from the Operations Research Society of China, and a Ministry of Education Natural Science Award in 2013. He was also nominated for 'Excellent Dissertation Award ' by the Ministry of Education of China. 

Liang Gao is a Professor at the School of Mechanical Science and Engineering, Huazhong University of Science and Technology. He is an Associate Director of the State Key Laboratory of Digital Manufacturing Equipment and Technology (DMET). He is a member of the Operations Research Society of China, Artificial Intelligence Society of Hubei, Operations Research Society of Hubei and Mechanical Engineering Society of Hubei. He was also the guest co-editor of the special issues of International Journal of Advancements in Computing Technology on 'Particle Swarm Optimization and Applications' in 2011 and International Journal of Advanced Manufacturing Technology on 'Process Planning
and Production Scheduling in Sustainable Manufacturing' in 2012. He was a referee for the International Journal of Production Research, International Journal of Computer Integrated Manufacturing and other related international journals. His main research areas are the modern optimization method and its applications in mechanical design and manufacturing. Over the last 5 years, he has published 2 books and 53 papers in respected journals. He has received a number of awards, including the Ministry of Education Natural Science Award first prize in 2013 and the Chinese Mechanical Engineering Society Youth Science and Technology Achievement Award in 2013. He was selected for the Program for New Century Excellent Talents in University by the Ministry of Education in 2008.
Erscheint lt. Verlag 3.6.2020
Reihe/Serie Engineering Applications of Computational Methods
Engineering Applications of Computational Methods
Zusatzinfo XVI, 462 p. 181 illus., 102 illus. in color.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik
Technik
Wirtschaft Betriebswirtschaft / Management Planung / Organisation
Schlagworte Dynamic scheduling • Integrated Process Planning and Scheduling • Intelligent Optimization Algorithms • IPPS Reference • Multi-Objective Optimization • Production Planning and Scheduling
ISBN-10 3-662-55305-8 / 3662553058
ISBN-13 978-3-662-55305-3 / 9783662553053
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 16,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
17,43