Fault Analysis and Protection System Design for DC Grids -  Kuntal Satpathi,  Abhisek Ukil,  Yew Ming Yeap

Fault Analysis and Protection System Design for DC Grids (eBook)

eBook Download: PDF
2020 | 1. Auflage
XIV, 402 Seiten
Springer Singapore (Verlag)
978-981-15-2977-1 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book offers a comprehensive reference guide to the important topics of fault analysis and protection system design for DC grids, at various voltage levels and for a range of applications. It bridges a much-needed research gap to enable wide-scale implementation of energy-efficient DC grids. Following an introduction, DC grid architecture is presented, covering the devices, operation and control methods. In turn, analytical methods for DC fault analysis are presented for different types of faults, followed by separate chapters on various DC fault identification methods, using time, frequency and time-frequency domain analyses of the DC current and voltage signals. The unit and non-unit protection strategies are discussed in detail, while a dedicated chapter addresses DC fault isolation devices. Step-by-step guidelines are provided for building hardware-based experimental test setups, as well as methods for validating the various algorithms. The book also features several application-driven case studies.



Abhisek Ukil received his B.Eng. degree in Electrical Engineering from Jadavpur University, Kolkata, India, in 2000, and his M.S. degree from the University of Bolton, UK, in 2004. He completed his Ph.D. degree at Pretoria (Tshwane) University of Technology, South Africa, where he worked on automated disturbance analysis in power systems, in 2006. Currently, he is an Associate Professor at the Department of Electrical, Computer and Software Engineering, University of Auckland, New Zealand. From 2013-2017, he was an Assistant Professor at the School of EEE, Nanyang Technological University, Singapore. From 2006-2013, he was Principal Scientist at the ABB Corporate Research Center, Baden-Daettwil, Switzerland. He holds 11 patents and is the author of more than 180 peer-reviewed papers, a monograph, and two book chapters. He is a Senior Member of the IEEE (USA) and a Registered Chartered Engineer (C.Eng.), UK. He is an Associate Editor of IEEE Transactions on Industrial Informatics and Electrical Engineering, published by Springer. His research interests include smart grids, DC grids, energy efficiency, renewable energy, energy storage, and condition monitoring.

Yeap Yew Ming received his B.Eng. degree in Electrical Engineering from the University of Malaya, Kuala Lumpur, Malaysia, in 2013. He received his Ph.D. degree from Nanyang Technological University, Singapore, where he worked on fault detection in High-Voltage Direct Current (HVDC) systems, in 2018. Currently, he is a Scientist at the Institute for Infocomm Research (I2R), Singapore, and is leading an industry project on EV as Co-Principal Investigator. He is the author of more than 20 peer-reviewed papers, and a reviewer for the journals IEEE Transactions on Industrial Electronics and Industrial Informatics. His research interests include smart grids, DC grids, power electronics & control, and energy storage for EV.

Kuntal Satpathi received his B.Tech. degree in Electrical Engineering from the Haldia Institute of Technology, India, in 2011. He received his Ph.D. degree from Nanyang Technological University, Singapore, where he worked on the operation and fault management of DC marine power systems, in 2019. From 2011-2014, he was with Jindal Power Limited, Raigarh, India, specializing in thermal power plant operations. Currently, he is a Research Fellow at Nanyang Technological University, Singapore. He is the author of nearly 20 peer-reviewed papers. His research interests include the modeling, control and protection of AC/DC grids.


This book offers a comprehensive reference guide to the important topics of fault analysis and protection system design for DC grids, at various voltage levels and for a range of applications. It bridges a much-needed research gap to enable wide-scale implementation of energy-efficient DC grids. Following an introduction, DC grid architecture is presented, covering the devices, operation and control methods. In turn, analytical methods for DC fault analysis are presented for different types of faults, followed by separate chapters on various DC fault identification methods, using time, frequency and time-frequency domain analyses of the DC current and voltage signals. The unit and non-unit protection strategies are discussed in detail, while a dedicated chapter addresses DC fault isolation devices. Step-by-step guidelines are provided for building hardware-based experimental test setups, as well as methods for validating the various algorithms. The book also features several application-driven case studies.

Preface 7
Contents 9
1 Introduction to DC Grid 15
1.1 Introduction 15
1.2 DC Grid Applications 16
1.2.1 Transmission Systems 16
1.2.2 Utilities and Microgrid 26
1.2.3 Datacenters 27
1.2.4 Transportation Systems 27
1.3 Relevant Standards and Voltage Levels 35
1.3.1 Standards 35
1.3.2 Voltage Levels 37
1.4 Power Quality Issues 38
1.5 Challenges in DC Grids: Design of Protection System 43
1.5.1 Repercussions of Faults in Existing Power Systems 43
1.5.2 Challenges with Fault Detection in DC Grids 45
1.5.3 Challenges with Fault Isolation in Grids 47
1.5.4 Some Practical Challenges 48
References 49
2 Components and Architectures of DC Grid for Various Applications 52
2.1 Introduction 52
2.2 Components in DC Grids 52
2.2.1 Diode Bridge Converters 53
2.2.2 Thyristor Based Current Source Converters 55
2.2.3 IGBT Based Voltage Source Converters 63
2.2.4 Emerging Converter Topologies 66
2.2.5 DC/DC Converters 70
2.2.6 Energy Storage Technologies 71
2.3 DC Grid Architectures and Applications 73
2.3.1 Transmission Applications: HVDC Systems 73
2.3.2 Utilities Applications: Microgrids 80
2.3.3 Datacenter Applications 84
2.3.4 Transportation Applications 85
References 93
3 Modeling and Control of Generation System for DC Grid Applications 95
3.1 Introduction 95
3.2 Generation Systems for HVDC and Microgrid Applications 96
3.2.1 CSC-Based Generation System 96
3.2.2 VSC-Based Generation System 103
3.3 Generation Systems for Marine and Aerospace Applications 119
3.3.1 AVR Based Generation System 121
3.3.2 AFR Based Generation System 123
3.3.3 Comparison 128
References 133
4 Faults in DC Networks 135
4.1 Introduction 135
4.1.1 Types of Faults in DC Networks 135
4.1.2 Statistics of Faults in DC Networks 136
4.1.3 Effect of Topology on Faults in DC Networks 138
4.2 Fault Current Calculations: CSC-Based DC System 140
4.3 Fault Current Calculations: VSC-Based DC System 141
4.3.1 Pole-to-Pole Fault 142
4.3.2 Pole-to-Ground Fault 161
4.4 Fault Current Calculations: MMC-Based DC System 166
4.4.1 Pole-to-Pole Fault 167
4.4.2 Pole-to-Ground Fault 171
4.5 Fault Current Calculation: Travelling Wave Approach 174
4.6 Example 176
References 179
5 Time-Domain Based Fault Detection in DC Grids 181
5.1 Introduction 181
5.2 Overcurrent Based Protection 182
5.3 Rate of Change-Based Protection 184
5.3.1 Current 184
5.3.2 Voltage 186
5.3.3 Practical Application 189
5.4 Capacitive Discharge Method 191
5.4.1 Background 191
5.4.2 Principle of Operation 192
5.4.3 Example 199
5.5 Conclusion 203
References 204
6 Frequency-Domain Based Fault Detection: Application of Short-Time Fourier Transform 206
6.1 Introduction 206
6.2 Operation of STFT 207
6.3 Application of STFT to Constant and Step Change in DC Current 209
6.3.1 STFT Application on Constant DC Current 209
6.3.2 STFT Application on Step Change in DC Current 210
6.4 Fault Detection by STFT 213
6.4.1 Fault Detection Criteria 215
6.4.2 Selection of Window Length 216
6.4.3 Effect of Window Function 218
6.4.4 Determining Tripping Threshold 219
6.4.5 Implementing STFT Based Fault Detection 221
6.5 Test System to Evaluate STFT Based Fault Detection Algorithm 222
6.5.1 Point-to-Point DC System 222
6.5.2 Multi-terminal DC System 225
6.6 Conclusion 231
References 232
7 Time-Frequency Domain Analysis: Wavelet-Transform Based Fault Detection 233
7.1 Introduction 233
7.2 Selection of Mother Wavelet 237
7.3 Detection Algorithm 241
7.4 Example 242
7.4.1 Two-Terminal HVDC System 242
7.4.2 Multi-terminal HVDC System 243
7.5 Conclusion 250
References 251
8 Non-unit Protection Strategies for DC Power Systems 253
8.1 Introduction 253
8.2 Non-unit Protection Strategies in AC System and Implementation Challenges in DC System 255
8.3 Fault Current Computation: Current Derivatives and Associated Parameters 258
8.3.1 Computing Peak Fault Current and Time to Reach Peak Fault Current 258
8.3.2 Computing Derivative Using Difference Equations 264
8.3.3 Comparison of Approximation of Derivative 268
8.4 System Description for Non-unit Protection Studies 270
8.5 Definite Time Based Protection Coordination 271
8.5.1 Using Current Magnitude 271
8.5.2 Using Current Derivatives 274
8.6 Definite Time Based Protection Coordination Using Estimated Inductance 276
8.7 Conclusion 278
References 279
9 Introduction to Directional Protection and Communication Assisted Protection Systems 281
9.1 Introduction 281
9.2 Need for Directional Protection 282
9.3 Analysis of Directional Fault Currents 283
9.3.1 System Description 283
9.3.2 Fault Analysis Using Superimposed Quantities 284
9.4 Directional Protection Design 291
9.4.1 Directional Element Design 291
9.4.2 Fault Detection 296
9.5 Performance Comparison of Various Directional Protection Strategies 296
9.6 Communication Assisted Protection Strategies 303
9.7 Conclusion 310
References 311
10 Fault Isolation in DC Grids 313
10.1 Introduction 313
10.2 Time Line of Fault Isolation 314
10.3 DC Grid Protection Devices 315
10.4 DC Circuit Breakers 316
10.4.1 Resonant Type DC Breaker 317
10.4.2 Non-resonant Type DC Breaker 323
10.5 Converter Based Isolation 325
10.5.1 SSCB Based on VSC with Freewheeling Diode 326
10.5.2 SSCB Based on H-Bridge Converter 328
10.6 Commercial DC Breakers 329
10.6.1 HVDC 329
10.6.2 MVDC 329
10.6.3 LVDC 330
References 332
11 Design of Experiment and Fault Studies 335
11.1 Introduction 335
11.2 Experimental Setup Description 336
11.2.1 Converter 336
11.2.2 DC Line 338
11.2.3 Measurement and Control 339
11.2.4 Controller Tuning 341
11.2.5 Fault and Protection Measure 344
11.3 Experimental Results 349
11.3.1 Steady State 349
11.3.2 Fault on DC Line 350
11.3.3 Load Change 351
11.4 Validation of Fault Detection Methods on Real Fault Signal 352
11.4.1 Wavelet Transform 352
11.4.2 Capacitive Discharge 354
11.4.3 Short-Time Fourier Transform 354
11.4.4 Comparison 358
11.5 Conclusion 363
References 364
12 Case Studies 365
12.1 Introduction 365
12.2 Protection System Design for Long-Distance HVDC Systems 366
12.2.1 Fault Clearance and Recovery Strategy 366
12.2.2 Fault Clearance Method 368
12.2.3 Recovery Strategy 373
12.2.4 Results and Discussion 376
12.3 Protection System Design for Compact DC Distribution Systems 381
12.3.1 Transient Analysis and Protection Requirements 382
12.3.2 Fault Detection and Selectivity Methods 386
12.3.3 Protection Design 389
12.4 Conclusion 394
References 396
Appendix Index 398
Index 398

Erscheint lt. Verlag 13.4.2020
Reihe/Serie Power Systems
Zusatzinfo XIV, 393 p. 299 illus., 91 illus. in color.
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Schlagworte Datacenter Power • DC Converter Systems • fault detection • fault isolation • Microgrids • MTDC HVDC
ISBN-10 981-15-2977-9 / 9811529779
ISBN-13 978-981-15-2977-1 / 9789811529771
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 25,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99
200 Aufgaben zum sicheren Umgang mit Quellen ionisierender Strahlung

von Jan-Willem Vahlbruch; Hans-Gerrit Vogt

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
34,99