Energy Efficient Building Design (eBook)

Ana-Maria Dabija (Herausgeber)

eBook Download: PDF
2020 | 1. Auflage
VIII, 281 Seiten
Springer-Verlag
978-3-030-40671-4 (ISBN)

Lese- und Medienproben

Energy Efficient Building Design -
Systemvoraussetzungen
128,39 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book is the result of recent research that deals with the built environment and innovative materials, carried out by specialists working in universities and centers of research in different professional fields ? architecture, engineering, physics ? and in an area that that spans from the Mediterranean Sea to the Persian Gulf, and from South Eastern Europe to the Middle East. This book takes the necessity of re-shaping the concept of building design in order to transform buildings from large scale energy consumers to energy savers and producers into consideration. The book is organized in two parts: theory and case studies. For the theoretical part, we chose from the wide range of sources that provide energy efficient materials and systems the two that seem to be endless: the sun and vegetation. Their use in building products represents a tool for specialists in the architectural design concept. The case-studies presented analyze different architectural programs, in different climates, from new buildings to rehabilitation approaches and from residential architecture to hospitals and sports arenas; each case emphasizes the interdisciplinarity of the building design activity in order to help readers gain a better understanding of the complex approach needed for energy efficient building design



Born in Bucharest, Romania, in 1960, Prof. Dr. Ana-Maria Dabija has been an architect since 1986. She worked in a design institute and a private company before pursuing a university career in the 'Ion Mincu' University of Architecture and Urbanism in Bucharest, in 1991. She has a Doctoral Degree, since 2000 and is a doctoral tutor since 2008. Among the courses she developed are the following 'Architectural Detailing Principles', 'Contemporary Technological Products and Subassemblies' and 'Mistakes in Design - Execution - Use'. She wrote the books -'Performant Façade Systems. The opaque component', 'Elements for Stair Design' (also translated in English), 'Elements for Designing Windows and Doors', 'Degradation of the Building Envelope', 'Photovoltaic Systems in Architecture', took part in more than 60 conferences (with papers published in the proceedings), coordinated technical regulations and scientific research. Since 2015 she is a member in the Commission for Renewable Energy of the Romanian Academy. Ana-Maria Dabija is a member of numerous national and international professional and scientific bodies as well as in technical committees. Since 2016 she is the Director of the Center of Architectural and Urban Studies (CSAU) of the 'Ion Mincu' University of Architecture and Urbanism Bucharest, Romania and since 2017 the Director of the Architecture Doctoral School of the Ion Mincu University

Preface 5
Contents 7
Part I: Building with the Sun – An Everlasting Energy Source 9
Chapter 1: A Review of the Significance and Challenges of Building Integrated Photovoltaics 10
1.1 Introduction 10
1.1.1 Justification 11
1.2 Background 13
1.3 The Importance of BIPV 16
1.3.1 BIPV as an Energy Source: ‘The Energy Dimension’ 17
1.3.2 BIPV as a Building Component: ‘The Building Dimension’ 17
1.4 BIPV Development and Challenges 19
1.4.1 BIPV Challenges 20
1.5 Further Research 21
1.6 Conclusion 23
References 23
Chapter 2: Design Opportunities and Building Integration of PV systems 28
2.1 Introduction 28
2.2 Methodology 30
2.2.1 Adaptation of the Solar Radiation 31
2.2.2 Temperature Adaptation 34
2.2.3 Model of the PV Efficiency 34
2.2.4 Studied Orientations 35
2.3 Computation Study 35
2.4 Experimental Study 40
2.5 Conclusions 45
References 47
Chapter 3: Optimization of Performances and Reliability for Building-Integrated Photovoltaic (BIPV) Systems 48
3.1 Introduction 48
3.2 Standards Used for BIPV Systems 49
3.3 State of the Art for BIPV Systems 49
3.4 Modeling, Numerical Simulation, and Optimization of BIPV Systems 52
3.4.1 Modeling and Simulation Techniques for BIPV Systems 52
3.4.1.1 MPPT Techniques 53
3.4.1.2 Fuzzy Logic Controller (FLC) 54
3.4.2 Implementation of the FLC-Based MPPT Algorithm for Numerical Modeling of BIPV Systems 56
3.5 Case Study: Results Obtained by Optimizing a BIPV System 57
3.6 Reliability Analysis of the Studied BIPV System: Obtained Results 63
3.7 Conclusion 65
References 66
Chapter 4: Inorganic, Coloured Thin Films for Solar Thermal Energy Convertors in Sustainable Buildings 68
4.1 Introduction 68
4.2 Driving Forces in Implementing Solar Thermal Systems 69
4.2.1 Social System in Interaction with Environment 69
4.2.2 Environmental Perturbation as Consequence of Energy Consumption 70
4.3 Coloured Solar Thermal Flat Plate Collectors 71
4.3.1 Flat Plate Solar Thermal Collectors 71
4.3.2 Materials for the Absorber Layer 72
4.3.3 Coloured Materials for Absorber Coatings in FPSTC 73
4.4 Conclusions 77
References 78
Chapter 5: Capitalizing on Solar Energy in Romania and Improving the Thermal Comfort of Buildings with Solar Air Collectors 81
5.1 Introduction 81
5.2 Solar Irradiation 83
5.2.1 Climate of Selected Localities 83
5.2.2 Solar Global Irradiation: Average Monthly Values 84
5.2.3 Sunshine Duration 86
5.3 Experimental Measurement of Solar Irradiation in Bucharest During 2017–2018 94
5.4 Solar Air Collectors to Improve the Thermal Buildings’ Comfort 95
5.4.1 Classification Based on Technologies 95
5.4.2 Performances of Thermo-Solar Collectors 97
5.4.3 Solar Air Collectors Integrated in the Building Architecture 99
5.5 Conclusion 99
References 100
Part II: Building with the Nature 101
Chapter 6: Parallel (Hi)Stories: A Subjective Approach to Energy-Efficient Design 102
6.1 Introduction 102
6.2 The Perennial of the Vernacular 103
6.3 Bioclimatic: A Heritage of the Vernacular 105
6.4 Old or New Facades 107
6.4.1 Trombe Walls 107
6.4.2 Solar Facades 109
6.4.3 Living Facades 110
6.4.4 Double-Skin Facades 111
6.5 Hanging Gardens of Semiramis or Eco-Roofs 113
6.6 Conclusions 115
References 116
Chapter 7: Traditional Semi-Buried House 118
7.1 Introduction 118
7.2 The “Bordei” 118
7.2.1 Problems of in the Traditional “Bordei” House Concept 124
7.2.1.1 Moisture 124
7.2.1.2 Floods 124
7.2.1.3 Difficult Access 124
7.2.1.4 Insufficient Natural Lighting 125
7.2.1.5 Poor Ventilation of the Interior Space 126
7.2.1.6 Heat Losses 126
7.2.2 “Bordei” House Advantages 127
7.2.2.1 Organic Building 127
7.2.2.2 It Was Built with Materials from the Area: Wood, Earth, and Clay 127
7.2.2.3 Low-Energy Consumption During the Construction Period 127
7.2.2.4 Orientation Toward the Cardinal Points 127
7.2.2.5 The Floor Below Ground Level 128
7.2.2.6 Thermal Insulation 128
7.2.2.7 The High Thermal Mass of the Earth Elements and the Existence of an Earth Stove 129
7.2.2.8 Capacity to Regulate Humidity 129
7.3 Proposals for Modernizing a “Bordei” House 129
7.3.1 Moisture Reduction 129
7.3.2 Avoiding Flood Zones 130
7.3.3 Making the Entrance Easy to Use 130
7.3.4 Natural Light According to the Norms 130
7.3.5 Ensuring Sufficient Ventilation 131
7.3.6 Correct Thermal Insulation of the Outer Shell 131
7.4 Conclusions 132
References 133
Chapter 8: Using Agricultural By-products for Creating Innovative Technologies and Materials 135
8.1 Introduction: Energy and Recycling 135
8.2 Bio-Based Products and Wastes 137
8.3 LCA Comparison Between Two Products for Vertical Closures 139
8.4 Conclusion 144
References 145
Part III: Case Studies 146
Chapter 9: Les conditions de la nature sont retrouvèe: The Tower of Shadow in Chandigarh and Other Le Corbusier’s Masterpieces 147
9.1 Introduction 147
9.2 Results and Discussions 148
9.2.1 The Tower of Shadows, Chandigarh 148
9.2.2 Palais de l’Association des Filateurs 150
9.2.3 Two European Experiences: La Tourette Convent and the Unité d’Habitation 153
9.3 Conclusions 156
References 158
Chapter 10: Sustainability and Energy Efficiency Design in Hospital Buildings 159
10.1 Introduction 159
10.2 Defining Sustainability and Energy Efficiency in Modern Healthcare Buildings 161
10.3 The WHO Calls for More “Green Hospitals” and the Quest for the ZERO Waste Hospital 167
10.4 Hospitals in the Future and Necessary Design Needs/Goals 169
References 171
Chapter 11: Football Stadium: An Energy-Efficient Building and a Source of Renewable Energy for the Community 172
11.1 Introduction 172
11.2 The Sport and the Stadium 174
11.3 Game-Related Legislation and European Norms 175
11.3.1 Reports and Game-Related Legislation: Impact Upon Design Norms 176
11.3.2 European Directives Concerning Sustainability and Sustainability Standards 177
11.4 The Sustainability of Football Stadiums 179
11.4.1 Economic and Environmental Sustainability 179
11.4.2 Social Sustainability 180
11.5 The Outcomes of Stadiums as Multifunctional Buildings 181
11.6 Conclusions 182
References 184
Chapter 12: Passive Design Strategies in Pursuit of Architectural Identity: The New ACT Student Center 186
12.1 Introduction 186
12.2 Brief - Site - Further Background Research 187
12.2.1 The Brief 187
12.2.2 The Site 188
12.2.3 Further Background Research 189
12.3 Environmental Concepts and Principles 189
12.3.1 Building Energy Performance Goals 191
12.3.2 Climatic and Microclimatic Conditions 192
12.4 Environmental Architectural Design 192
12.5 Environmental Design Simulation 196
12.6 Discussion 197
References 198
Chapter 13: Towards a Sustainable Refurbishment of the Hellenic Residential Building Stock 200
13.1 Introduction 200
13.2 Hellenic Residential Buildings 203
13.2.1 Building Stock Model (BSM) 205
13.2.2 Calculations 206
13.2.2.1 Adaptation Factors from EPCs 207
13.2.2.2 Adaptation Factors from Field Surveys 208
13.3 Modelling the Hellenic Building Stock: A Realistic Outlook 210
13.3.1 Validation 212
13.3.2 Renovation Scenarios Towards 2030 214
13.4 Conclusions 216
References 218
Chapter 14: Design Strategies for Green/Energy-Efficient Building Design: An Apartment Building in the Gaziantep Project 220
14.1 Introduction 220
14.2 Energy-Efficient Building Design Decisions 221
14.2.1 Passive Design Principles and Strategies 221
14.2.1.1 Natural Ventilation and Wind Control Principles and Strategies 222
14.2.1.2 Sun Control and Natural Daylighting 224
14.2.1.3 Green Roof 226
14.2.1.4 Envelope Design and Insulation 226
14.2.2 Active Solar Systems 227
14.2.3 Resource Conservation and Local Material Use 228
References 231
Chapter 15: A Sustainable Approach Towards Energy Savings in the Cities of Romania, Bucharest: A Case Study 233
15.1 A Brief History of the Residential Collective Apartments in Bucharest 233
15.2 Energy Efficiency in Buildings 239
15.3 Green Energy Trends 242
15.4 Greening the City 243
15.5 Conclusions 247
References 247
Chapter 16: The Heat Island as a Result and Cause of Environmental and Social Degradation: Two Different Settlements in the Town of Afragola of the Metropolitan City of Naples 249
16.1 Introduction 249
16.2 Heat Island in the Batch of Buildings in Line 252
16.2.1 Application and Comparison Between the Two Methods 255
16.3 Microclimate and Usability of the Garden Courts 258
16.4 Conclusions 261
References 261
Chapter 17: Settlement Scale Analysis Approach to Reach Nearly Zero Energy Communities 263
17.1 Introduction 263
17.2 Methodology 264
17.3 Results 266
17.4 Conclusions 271
References 271
Index 273

Erscheint lt. Verlag 11.4.2020
Zusatzinfo VIII, 281 p. 151 illus., 135 illus. in color.
Sprache englisch
Themenwelt Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte building envelope • energy efficiency • green buildings • indoor climate • Living envelopes • Passive and active systems • Sustainable Architecture • sustainable building materials • Sustainable living • urban heat island effect
ISBN-10 3-030-40671-7 / 3030406717
ISBN-13 978-3-030-40671-4 / 9783030406714
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 18,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten

von Jörg Laumann; Markus Feldmann; Jörg Frickel …

eBook Download (2022)
Springer Vieweg (Verlag)
119,99