RF Power Semiconductor Generator Application in Heating and Energy Utilization -

RF Power Semiconductor Generator Application in Heating and Energy Utilization (eBook)

eBook Download: PDF
2020 | 1st ed. 2020
X, 239 Seiten
Springer Singapore (Verlag)
978-981-15-3548-2 (ISBN)
Systemvoraussetzungen
106,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This is a specialized book for researchers and technicians of universities and companies who are interested in the fundamentals of RF power semiconductors, their applications and market penetration.
Looking around, we see that products using vacuum tube technology are disappearing. For example, branch tube TVs have changed to liquid crystal TVs, and fluorescent light have turned into LED. The switch from vacuum tube technology to semiconductor technology has progressed remarkably. At the same time, high-precision functionalization, miniaturization and energy saving have advanced. On the other hand, there is a magnetron which is a vacuum tube device for generating microwaves. However, even this vacuum tube technology has come to be replaced by RF power semiconductor technology. In the last few years the price of semiconductors has dropped sharply and its application to microwave heating and energy fields will proceed. In some fields the transition from magnetron microwave oscillator to semiconductor microwave oscillator has already begun. From now on this development will progress remarkably. 

Although there are several technical books on electrical systems that explain RF power semiconductors, there are no books yet based on users' viewpoints on actual microwave heating and energy fields. In particular, none have been written about exact usage and practical cases, to answer questions such as 'What are the advantages and disadvantages of RF power semiconductor oscillator?', 'What kind of field can be used?' and the difficulty of the market and application. Based on these issues, this book explains the RF power semiconductors from the user's point of view by covering a very wide range of fields.


Satoshi Horikoshi, Sophia University, Department of Materials and Life Sciences (Associate Professor). Microwave Science Research Center MSRC (Director). 
Satoshi Horikoshi received his Ph.D. degree in 1999, and was subsequently a postdoctoral researcher at the Frontier Research Center for the Global Environment Science (Ministry of Education, Culture, Sports, Science and Technology) until 2006. He joined Sophia University as Assistant Professor in 2006, moved to Tokyo University of Science as Associate Professor in 2008, after which he returned to Sophia University, again as Associate Professor, in 2011. Currently he is Director of the Japan Society of Electromagnetic Wave Energy Applications (JEMEA), and is on the Editorial Advisory Board of the Journal of Microwave Power and Electromagnetic Energy a well as three other international journals. His research interests involve new functional material or nanomaterial synthesis, molecular biology, the formation of sustainable energy, and environmental protection using microwave-energy and/or photo-energy. He has co-authored over 190 scientific publications and has contributed to, and edited or co-edited, 23 books.  

Nick Serpone, Ph.D., F. EurASc. Visiting Professor, PhotoGreen Laboratory, Dipartimento di Chimica, Universita di Pavia, Italia.  
Nick Serpone is Professor Emeritus (Concordia University, Montreal, Canada), and since 2002 has been a Visiting Professor at the University of Pavia (Italy). He was also a Visiting Professor at the Universities of Bologna and Ferrara (Italy), École Polytechnique Fédérale de Lausanne (Switzerland), École Centrale de Lyon (France), and Tokyo University of Science (Japan), and a Guest Lecturer at the University of Milan (Italy). He was Program Director at the National Science Foundation (Washington, USA) and consultant to the 3M Company (USA). He has co-edited/co-authored several books, contributed 23 chapters to books, and published over 450 articles. His principal interests have focused on the photophysics and photochemistry of coordination compounds and metal-oxide semiconductors, environmental remediation, and microwave chemistry. He is a Fellow of the European Academy of Sciences (EurASc) where he is currently Head of the Materials Science Division.

This is a specialized book for researchers and technicians of universities and companies who are interested in the fundamentals of RF power semiconductors, their applications and market penetration.Looking around, we see that products using vacuum tube technology are disappearing. For example, branch tube TVs have changed to liquid crystal TVs, and fluorescent light have turned into LED. The switch from vacuum tube technology to semiconductor technology has progressed remarkably. At the same time, high-precision functionalization, miniaturization and energy saving have advanced. On the other hand, there is a magnetron which is a vacuum tube device for generating microwaves. However, even this vacuum tube technology has come to be replaced by RF power semiconductor technology. In the last few years the price of semiconductors has dropped sharply and its application to microwave heating and energy fields will proceed. In some fields the transition from magnetron microwave oscillatorto semiconductor microwave oscillator has already begun. From now on this development will progress remarkably.  Although there are several technical books on electrical systems that explain RF power semiconductors, there are no books yet based on users' viewpoints on actual microwave heating and energy fields. In particular, none have been written about exact usage and practical cases, to answer questions such as "e;What are the advantages and disadvantages of RF power semiconductor oscillator?"e;, "e;What kind of field can be used?"e; and the difficulty of the market and application. Based on these issues, this book explains the RF power semiconductors from the user's point of view by covering a very wide range of fields.

Preface 5
Contents 7
About the Editors 9
Part I Solid State RF 11
1 RF Energy System with Solid State Device 12
1.1 Introduction 12
1.2 Basic Technology of a Microwave Amplifier with a Solid State Device 13
1.3 Recent Research and Development Status of Microwave Amplifiers 17
1.4 Recent Commercial High Power Microwave Amplifiers 20
1.5 New Microwave Heating Systems with Solid State Devices 22
1.6 Concluding Remarks 26
References 28
2 Solid-State RF Power Generators 33
2.1 Introduction 33
2.1.1 The Magnetron 33
2.1.2 Benefits of the Solid-State Generator 35
2.1.3 The Need for a Systems Approach 37
2.2 RF Power Semiconductors 38
2.2.1 LDMOS 39
2.2.2 GaN 42
2.2.3 Reliability and Thermal Behaviour 44
2.2.4 Ruggedness 45
2.2.5 Internal Impedance Matching 46
2.2.6 Simulation Models 46
2.3 RF Power Amplifier Design 47
2.3.1 Key Performance Parameters 47
2.3.2 Power Amplifier Classes 48
2.3.3 Power Amplifier Packaging 50
2.3.4 Impedance Matching 50
2.3.5 Bias and Control 52
2.3.6 Pulse Considerations 54
2.3.7 Power Monitoring 55
2.3.8 Integrated Power Amplifier Devices 55
2.4 Generator Architecture 56
2.4.1 Gain Budgeting 57
2.4.2 RF Power Oscillators 58
2.4.3 Power Combining 59
2.4.4 Signal Sources 67
2.4.5 Coherent Measurements 68
2.4.6 Thermal Management 70
2.5 Design Tools 71
References 74
Part II Heating Applications 77
3 Mechanism of Microwave Heating of Matter 78
3.1 What Is Heat? 78
3.2 Difference Between Microwave Frequency and Vibrations of Atoms/Molecules 81
3.3 Interaction Between Microwaves (Electromagnetic Waves) and Matter 82
3.4 Heating Mechanism by the Microwaves’ Electric (E-) Field 83
3.4.1 Molecules (Mainly Liquids) 83
3.4.2 Inorganic Solids 86
3.5 Mechanism of Heating by the Microwaves’ Magnetic (H-) Field 87
3.5.1 Electric Conductor 88
3.5.2 Ferromagnetic Materials 89
3.5.3 Distinction Between Induction Current (Ohmic) Loss and Magnetic Loss 93
3.6 Converting Mechanisms of Microwave Energy into Heat 93
References 96
4 Microwave Flow Chemistry 97
4.1 Introduction 97
4.1.1 Microwave Heating Devices 97
4.1.2 Microwave Heating in Chemical Synthesis 99
4.1.3 Flow Chemistry: Principles and Benefits 100
4.1.4 Synergy of Flow Chemistry and Microwave Heating 101
4.1.5 Merits of a Semiconductor Microwave Generator in Flow Chemistry 103
4.2 Semiconductor Generators: Microwave Flow Chemistry Applications 104
4.2.1 Reported Reactor Configurations and Capabilities 104
4.2.2 High-Temperature Rearrangements and Cycloadditions 106
4.2.3 High-Temperature Alkylation Reactions 111
4.2.4 Heterogeneous Catalytic Reactions 113
4.2.5 Reaction Optimization 114
4.3 Summary and Outlook 116
References and Notes 117
5 Curing of Adhesives and Resins with Microwaves 124
5.1 Molecular Polarization and Rotation 124
5.2 Reaction Kinetics 127
5.3 Thermodynamics 127
5.4 Field Size and Uniformity Effects 128
5.5 Variable Frequency Microwaves {VFM} 129
5.6 Temperature Control of Adhesion 130
5.7 Unique Polymerization Characteristics 131
5.7.1 Thermoplastic Chemistries 132
5.7.2 Microwave Curing of Thermoplastics 132
5.7.3 Thermoset Chemistries 133
5.7.4 Microwave Curing of Thermosets 134
5.7.5 Commercial Adhesive Results 135
5.8 Stress and Temperature 136
5.9 Exothermic Temperature Control 139
5.10 Effects of Fillers in Adhesives 139
5.11 Application Failure Mechanisms 141
5.12 Interactions with UV Adhesives and Microwaves 141
5.13 Chemical Optimization for Microwaves 142
5.14 Commercial Adoption and Equipment 143
References 147
6 RF Cooking Ovens 149
6.1 Figures of Merit 149
6.1.1 Resonant Cavities 149
6.1.2 Quality Factor and Mode Separation 150
6.1.3 Electromagnetic Interaction with Food 151
6.2 Simulations 153
6.3 Intelligent Cooking 158
6.4 A Closed-Loop System 158
6.5 Performance Characterization 160
6.5.1 Efficiency 160
6.5.2 Uniformity 161
6.6 Concluding Remarks 164
References 165
7 Radio Frequency (RF) Discharge Lamps 166
7.1 The Beginning 166
7.2 Radio Frequency (RF) Discharge Lamps 169
7.3 Attractive Features of RF Discharge Lamps 172
7.4 Novel Application of RF Discharge Lamp 172
7.4.1 Enhancement of Reactions in Organic Synthesis by MDEL Systems 173
7.4.2 Environmental Remediation Using Microwave Dielectric Heating 174
7.5 Advantages of Using a Semiconductor Microwave Generator 174
7.6 Initiatives that a MDEL Lamp Should Aim for in the Future 176
7.7 Concluding Remarks 178
References 180
Part III Energy Applications 182
8 Microwave Plasma 183
8.1 Microwave Discharge Breakdown 183
8.2 Establishment of Steady-State Discharge 185
8.3 Electromagnetic Wave Propagation in Plasma 186
8.4 Production of Low-Pressure Microwave Plasma Without Magnetic Field (Surface Wave Plasma SWP)
8.5 Low-Pressure Microwave Plasma with Magnetic Field (Electron Cyclotron Resonance Plasma ECR Plasma)
8.6 High-Pressure Microwave Plasma 193
8.7 Atmospheric Pressure Microwave Plasma (APMP) 194
References 195
9 Plasma-Assisted Combustion in Automobile Engines Using Semiconductor-Oscillated Microwave Discharge Igniters 197
9.1 Introduction 197
9.2 Heating System of Catalytic Converters Using Microwaves [13] 198
9.2.1 Background 198
9.2.2 Experimental Setup and Results 201
9.2.3 Summary 203
9.3 Improvement in Combustion Performance and Lean Burn Limit by a Multi-point Microwave Discharge Igniter 204
9.3.1 Background 204
9.3.2 Microwave Oscillation and Control 205
9.3.3 MDI Performance Test with Constant Volume Combustion Chamber 209
9.3.4 MDI Performance Test with Multi-cylinder Engine 211
9.3.5 Load Performance Test of Lean Burn 212
9.3.6 Emission Performance Test of Lean Burn 214
9.3.7 Summary 214
9.4 A Novel Plasma Igniter 215
References 216
Part IV New Application 219
10 Microwave-Assisted Magnetic Recording 220
10.1 Introduction 220
10.2 Microwave-Assisted Magnetic Recording (MAMR) 223
10.2.1 Microwave-Assisted Switching (MAS) 223
10.2.2 Spin-Torque Oscillator (STO) for MAMR 229
10.3 MAMR-Based 3D Magnetic Recording 231
10.3.1 Layer-Selective MAS 231
10.3.2 STO Reader for 3D Recording 234
10.4 Summary 236
References 238

Erscheint lt. Verlag 26.3.2020
Zusatzinfo X, 239 p. 193 illus., 123 illus. in color.
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Technik Nachrichtentechnik
Schlagworte Microwave energy utilization • Microwave heating utilization • plasma processing • RF power semiconductor generator • Wireless power transmission
ISBN-10 981-15-3548-5 / 9811535485
ISBN-13 978-981-15-3548-2 / 9789811535482
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 12,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99