Advances in Sustainable Polymers -

Advances in Sustainable Polymers (eBook)

Synthesis, Fabrication and Characterization
eBook Download: PDF
2020 | 1st ed. 2020
XXIX, 404 Seiten
Springer Singapore (Verlag)
978-981-15-1251-3 (ISBN)
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book discusses synthesis and characterization of sustainable polymers. The book covers opportunities and challenges of using sustainable polymers to replace existing petroleum based feedstock. This volume provides insights into the chemistry of polymerization, and discusses tailoring the properties of the polymers at the source in order fit requirements of specific applications. The book also covers processing of these polymers and their critical assessment. The book will be of use to chemists and engineers in the industry and academia working on sustainable polymers and their commercialization to replace dependence on petroleum-based polymers.


Vimal Katiyar is a Professor in the Department of Chemical Engineering, Indian Institute of Technology (IIT) Guwahati, India. He has done his M. Tech and PhD in Chemical Engineering from IIT Kanpur and IIT Bombay respectively, and postdoctoral work in Riso National Laboratory for Sustainable Energy, DTU, Denmark. His current research interests include the synthetic and biodegradable polymers, polymer processing, biothermosets, nanobiocomposites and fuel cells. Dr Katiyar has more than 100 research publications in reputed journals, and has authored numerous book chapters and conference papers, and holds 22 published patents.

Amit Kumar is an Associate Professor in the Department of Chemical Engineering, IIT Guwahati. He has done his B.Tech and PhD from IIT Kharagpur and the University of Delaware respectively. His research interests include molecular modeling and simulation, polymers and polymer nanocomposites, gas adsorption, transport and separation. He has authored 3 book chapters and more than 30 research papers in reputed journals and conferences.

Neha Mulchandani is a research scholar in the Department of Chemical Engineering, IIT Guwahati. Her work focuses on developing carbon dioxide derived lactone based copolymers and composites for potential applications.
 


This book discusses synthesis and characterization of sustainable polymers. The book covers opportunities and challenges of using sustainable polymers to replace existing petroleum based feedstock. This volume provides insights into the chemistry of polymerization, and discusses tailoring the properties of the polymers at the source in order fit requirements of specific applications. The book also covers processing of these polymers and their critical assessment. The book will be of use to chemists and engineers in the industry and academia working on sustainable polymers and their commercialization to replace dependence on petroleum-based polymers.

Preface 7
Acknowledgements 11
About Fourth International Symposium on Advances in Sustainable Polymers (ASP 17): From 08–11 January 2018 organized by IIT Guwahati 12
Contents 14
Editors and Contributors 16
Abbreviations 19
1 Synthesis Strategies for Biomedical Grade Polymers 28
1 Introduction 28
2 Methods of Polymerization 29
2.1 Chain-Growth Polymerization 30
2.2 Step-Growth Polymerization 31
2.3 Branched Polymers 31
3 Biodegradable and Non-biodegradable Polymers 32
3.1 Non-biodegradable Polymers and  their Medical Uses 32
3.2 Biodegradable Polymers and  their Medical Uses 33
4 Considerations for Biomedical Applications 37
4.1 Selection of Initiator and Catalyst 37
4.2 Sterilization Techniques 38
5 Commercially Available Medical Grade Polymers 39
5.1 Silicone Rubbers 39
5.2 Polyaryletheretherketones 40
6 Summary 41
References 41
2 Sustainable Routes for Synthesis of Poly(?-Caprolactone): Prospects in Chemical Industries 48
1 Introduction 48
2 Ring-Opening Polymerization of ?-Caprolactone 50
2.1 Anionic Ring-Opening Polymerization 51
2.2 Coordination–Insertion Polymerization 51
3 Caprolactone from Biomass 52
3.1 Extraction of Hydroxymethylfurfural from Biomass 53
4 Caprolactone from Petroleum Resources 55
5 Microbial Synthesis of Caprolactone 55
6 Future Prospects in Chemical Industries 56
References 56
3 Polymers from Carbon Dioxide—A Route Towards a Sustainable Future 61
1 Introduction 62
2 Carbon Dioxide: Potential as a Monomer 63
2.1 CO2/Epoxide Copolymerization 63
2.2 CO2/Alkyne Copolymerization 65
2.3 CO2/Olefin Copolymerization 66
2.4 CO2/Diol Copolymerization 67
2.5 Other Methods 69
3 Existing Technologies for Making Polymers from CO2 72
4 Current Challenges and Future Scope 72
References 73
4 Production, Characterization, and Applications of Biodegradable Polymer: Polyhydroxyalkanoates 76
1 Introduction 77
1.1 Historical Overview 79
1.2 General Structure and Classification of Polyhydroxyalkanoates (PHAs) 79
1.3 Physical Properties of PHA 80
2 Production of PHAs 82
2.1 PHA-Producing Microorganisms 82
2.2 Substrates for PHAs Production 85
3 PHAs Extraction from Microorganism 95
3.1 Solvent Extraction 95
3.2 Digestion Method 95
3.3 Mechanical Disruption 96
3.4 Supercritical Fluid Extraction 96
3.5 Aqueous Two-Phase Extraction 97
3.6 Ultrasound-Assisted Extraction 97
4 Characterization of PHA 98
4.1 Nuclear Magnetic Resonance (NMR) Spectroscopy 98
4.2 Fourier Transform Infrared (FTIR) Spectroscopy 99
4.3 X-Ray Powder Diffraction (XRD) Analysis 99
4.4 Differential Scanning Calorimetry (DSC) 100
4.5 Thermogravimetric and Differential Thermogravimetric Analysis (TGA and DTG) 101
4.6 Gel Permeation Chromatography (GPC) 102
4.7 Mechanical Properties (Tensile Strength, Young’s Modulus, and Elongation at Break) 103
5 Biodegradability of PHAs 105
6 Application of PHAs 106
6.1 Medical Sector 106
6.2 Agricultural Sector 107
6.3 Industrial Sector 107
7 Challenges in PHAs Production 108
8 Conclusion 109
References 110
5 Alternating Copolymers Based on Amino Acids and Peptides 120
1 Introduction 121
2 Different Synthetic Strategies 122
3 Mechanistic Models on Styrene–Maleic Anhydride Radical Copolymerization 125
4 Recent Development of Alternating Copolymers Containing Amino Acids and Peptides 125
5 General Applications Originated from Alternating Architectures 135
6 Conclusions 137
References 138
6 Fabrication of Stimuli-Responsive Polymers and their Composites: Candidates for Resorbable Sutures 145
1 Introduction 146
2 Suture 146
2.1 Characteristics of Suture 147
3 Classification of Suture Materials 148
3.1 Selection of Suture 149
3.2 Fabrication of Sutures 150
4 Biodegradable Suture 153
4.1 Biodegradable Polymer-Based Suture (BPBS) 154
4.2 Biodegradable Composite-Based Sutures (BCBS) 155
4.3 Advantages of BCBS Over BPBS 157
5 Stimuli-Responsive Polymers 158
5.1 Magnetic Field Responsive Polymers 159
5.2 Electric Field Responsive Polymers 160
5.3 Temperature and pH Responsive Polymers 161
5.4 Chemical Environment, Photo Effect, Sonication and Other Stimulus 161
6 Resorbable Sutures: In Vitro and In Vivo Studies 163
7 Future Perspectives 164
References 165
7 Biocompatible Thermoresponsive Polymers: Property and Synthesis 169
1 Introduction 173
2 Selected Thermoresponsive Polymers and Their Behavior 175
2.1 Poly(N-Alkylacrylamide) 175
2.2 Poly(N-Vinyl Caprolactam) (PVCa) 177
2.3 Poly(Methyl Vinyl Ether) (PMVE) 178
2.4 Poly(N-Ethyl Oxazoline) (PEtOx) 178
2.5 Poly(Acrylic Acid-Co-Acrylamide) 178
3 Synthesis of Thermoresponsive Polymers in Solution Using Different Polymerization Techniques 178
3.1 Atom Transfer Radical Polymerization (ATRP) 180
3.2 Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization 185
3.3 Nitroxide-Mediated Polymerization (NMP) 192
4 Thermoresponsive Polymers on Surfaces Using Different Surface Polymerization Techniques 197
5 Conclusion 199
References 201
8 Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization in Ionic Liquids: A Sustainable Process 206
1 Introduction 206
2 Polymerization of Methacrylates in ILs 207
2.1 Polymerization Kinetics of Methacrylates in ILs 210
2.2 Recovery and Reuse of ILs 212
3 Conclusion 214
References 214
9 Creation of Electrically and Optically Functional Materials from Cellulose Derivatives via Simple Modification and Orientation Control 217
1 Introduction 217
2 Improvement of Dielectric Constant 219
2.1 Background 219
2.2 Sample Preparation 220
2.3 Fundamental Characterization of Cm-CyEC 220
2.4 Stretching and Segmental Orientation 222
2.5 Dielectric Properties 224
2.6 Summary and Future Prospects 225
3 Birefringence Control 225
3.1 Background 225
3.2 CA-Graft-PLLA: Discontinuous Birefringence Change Accompanying Branch Chain Length 226
3.3 CA-Graft-PMMA: Reversal of Polarity of Birefringence Due to Increase in Graft Chain Length 229
3.4 Summary 231
4 Dual Mechanochromism 231
4.1 Background 231
4.2 Preparation of ChLC Film by Combining Cellulose Derivative and Synthetic Polymer 232
4.3 Color Tone Change by Compressing EC/PAA Films 232
4.4 Circular Dichroism Inversion by Compression of EC/PAA Film 233
4.5 Mechanism of CD Inversion 234
4.6 Future Prospects 234
References 235
10 Biocompatible Anisotropic Designer Particles 238
1 Introduction 239
2 Fabrication of Polylactide-Based Multicompartmental Microparticles/Cylinders/Fibers Using Electrohydrodynamic Co-jetting Technique 241
3 Controlled Bending Transitions of Compositionally Anisotropic Microcylinders 245
4 Chemically Orthogonal Three-Patch Particles 247
5 Selective In Vitro Hydrolytic Degradation of Compositionally Anisotropic Microparticles 251
6 Compositionally Anisotropic Bicompartmental Particles for Dual-Drug Delivery 252
7 Conclusion 255
References 255
11 Development of Biomass-Derived Cellulose Nanocrystals and its Composites 258
1 Introduction 258
2 Cellulose Nanocrystals 260
2.1 Structural Arrangement of Cellulose 260
2.2 Cellulosic Nanomaterials 261
2.3 Various Crystalline forms of Cellulose Nanocrystals 262
2.4 Dimensions of Cellulose Nanocrystals 263
3 Biomass-Based Sustainable Sources of Cellulose Nanocrystals 264
3.1 Lignocellulosic Sources 264
3.2 Algal Sources and Bacterial Sources 265
3.3 Other Sources 265
4 Various Extraction Techniques of Cellulose Nanocrystals 266
4.1 Acid Hydrolysis 267
4.2 Enzymatic Hydrolysis 271
4.3 Mechanical Methods 272
4.4 Oxidation Methods 273
4.5 Ionic Liquid Treatment 274
4.6 Subcritical Water Hydrolysis 276
4.7 Combined Processes 277
4.8 Purification and Fractionation 278
5 Typical Properties of Cellulose Nanocrystals and Its Composites 279
5.1 Mechanical Properties 279
5.2 Rheological Properties 280
5.3 Surface Modification/Functionalization 282
6 Conclusion 284
References 284
12 Biodegradable Nanocomposite Foams: Processing, Structure, and Properties 291
1 Introduction 291
1.1 Poly (Lactic Acid) (PLA) 294
2 Fabrication of Polymeric Foams 295
2.1 Batch Foaming Process 295
2.2 Continuous Foaming Process 296
3 Polymer Foaming Technology 297
3.1 Physical Foaming 297
3.2 Reactive Foaming 298
4 Recent Advances in Biodegradable PLA-Based Foams 299
5 Nanostructured Materials in PLA-Based Foams 302
5.1 PLA- and Silk Fibroin-Based Nanocomposite Foams 302
5.2 PLA and Nanocellulose-Based Nanocomposite Foams 303
5.3 PLA- and Nanochitosan-Based Nanocomposite Foams 303
5.4 PLA- and Nanogum-Based Nanocomposite Foams 304
6 Other Bio-based Sustainable Foams 304
References 306
13 Biodegradable Copolyester-Based Natural Fibers–Polymer Composites: Morphological, Mechanical, and Degradation Behavior 309
1 Introduction 310
2 Preparation and Characterization Techniques 311
2.1 Preparation of Micro-and Nanocrystalline Cellulose 311
2.2 Preparation of Polymer Composites 313
2.3 Characterization Techniques 314
3 Natural Fibers and Degradable Green Composites 319
3.1 Natural Fiber Composites 319
3.2 Degradable Polymer Composites 320
3.3 Completely Degradable Green Polymer Composites 323
4 Biodegradation Mechanisms 329
5 Summary, Trends, and New Opportunities 330
References 331
14 DSC and SWAXS Studies on the Effects of Silk Nanocrystals on Crystallization of Poly(l-Lactic Acid) 340
1 Introduction 340
2 Experimental 341
2.1 Results and Discussion 343
3 Conclusion 357
References 357
15 Mimicking Smart Textile by Fabricating Stereocomplex Poly(Lactic Acid) Nanocomposite Fibers 359
1 Introduction 360
1.1 Smart Textile 361
2 Nanotechnology 363
2.1 Organic Nanoparticle 363
2.2 Inorganic Nanoparticles 367
3 Different Preparation Techniques for Organic and Inorganic Nanomaterials 369
3.1 Non-biodegradable Polyester as Fibers 369
3.2 Natural and Synthetic Fiber Composites 370
4 Poly(Lactic Acid) (PLA) 371
4.1 PLA as Composite Fibers 372
4.2 Stereocomplex PLA Fibers 374
5 Conclusion and Future Scope 376
References 377
16 Life Cycle Assessment of Chitosan 381
1 Introduction 382
2 Intended Purpose, Methods, and Variants of LCA 383
2.1 Phases of LCA 384
2.2 Process Variants of LCA 386
3 Origin of Chitosan: A Class of Polysaccharides 387
3.1 Storage Polysaccharides 387
3.2 Structural Polysaccharides 388
4 History Outline of Chitosan 389
4.1 Routes of Chitosan Fabrication 390
4.2 Properties of Chitosan 390
4.3 Applications of Chitosan 393
5 LCA of Chitosan and Related Products 396
5.1 LCA of Chitosan Production 396
5.2 LCA of Chitosan as Edible Coatings and Films 398
5.3 LCA of Chitosan as Flocculation and Adhesives 399
6 Conclusion 400
References 400
17 Recent Trends and Advances in the Biodegradation of Conventional Plastics 406
1 Introduction 406
2 Types of Plastics 408
2.1 Natural Plastics 408
2.2 Synthetic Plastics 408
3 Biodegradation of Plastics 409
3.1 Factors Affecting Plastic Biodegradation 411
4 Recent Advances in Biodegradation of Plastics 412
5 Challenges and Future Directions 416
References 417

Erscheint lt. Verlag 3.3.2020
Reihe/Serie Materials Horizons: From Nature to Nanomaterials
Materials Horizons: From Nature to Nanomaterials
Zusatzinfo XXIX, 404 p. 165 illus., 110 illus. in color.
Sprache englisch
Themenwelt Naturwissenschaften Biologie Ökologie / Naturschutz
Naturwissenschaften Chemie Organische Chemie
Technik Maschinenbau
Wirtschaft
Schlagworte Biocompatible Polymers • Biodegradable Polymer Composites • Petrochemical Based Polymers • Polyhydroxyalkanoates • polymer Life Cycle Assessment • Polymer Synthesis Strategies • Sustainable Packaging • sustainable polymers • Thermo-Responsive Polymers
ISBN-10 981-15-1251-5 / 9811512515
ISBN-13 978-981-15-1251-3 / 9789811512513
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 15,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich