Magnetic Nanoheterostructures (eBook)
VIII, 494 Seiten
Springer International Publishing (Verlag)
978-3-030-39923-8 (ISBN)
Dr. Sharma is a faculty in Materials Science at Department of Physics, Faculty of Science & Technology, The University of the West Indies (UWI), Trinidad & Tobago. Before joining UWI, he worked as a Professor Adjunto (IV) at Department of Physics, Federal University of Maranhao, Brazil (2014-2019). He has received his Ph.D. in Physics from Himachal Pradesh University, Shimla, India. He worked on different research/academic positions in Brazil, France, Czech Republic, India and Mexico from 2007-2014. His research interests include magnetic nanohybrids, their synthesis, characterization and utilization in magnetic and biomedical applications.
Dr. Javed has received his PhD degree from Universite Denis Diderot, France in 2015 under higher education commission Pakistan overseas scholarship program. He is currently working as Assistant professor in department of Physics, University of Agriculture, Faisalabad, Pakistan. His research interest based on magnetic nanomaterials for biomedical applications especially magnetic hyperthermia and MRI.Preface 6
Contents 7
1 Liquid-Phase Synthesis of Multifunctional Nanomaterials: A Recent Update 9
Introduction 10
Synthesis Methodologies: Role of Chemistry 11
Top-Down Approach 11
Bottom-Up Approach 12
Liquid-Phase Synthesis 12
Precipitation 13
Hydro/Solvothermal Synthesis 15
Thermal Decomposition 18
Microwave-Assisted Hydrothermal Method 20
Polyol Synthesis 25
Liquid-Phase Synthesis: Hybrid Nanomaterials 26
Magnetic Silica/Carbon Interface 27
Magnetic Plasmonic Interface 31
Magnetic Luminescent Interface 33
Nucleation and Growth of NPs in Solutions 37
Theory of Nucleation 38
Growth Mechanism 41
Ostwald’s Ripening 43
Experimental Explanation 45
Post-synthesis Chemistry of NPs 47
Surface Modification and Water Dispersion of NPs 47
Bio-conjugation of NPs 49
Future of Liquid-Phase Synthesis for Biomedical Applications 51
References 52
2 Iron Oxide Magnetic Nanoparticles (NPs) Tailored for Biomedical Applications 65
Introduction 65
The Synthetic Design of Biocompatible NPS: Factors to Consider 66
Synthetic Methods: Pros and Cons 69
Biologically Compatible Coating Materials for NPs 72
The Cellular Uptake Process of NPs 75
Generation of Reactive Oxygen Species in Response to NP’s Cellular Uptake 83
Biodistribution of NP’s Following Cellular Uptake 85
Tailoring the NPs/Plasma Components Interactions to Achieve Specific Tissue Targeting 88
The Effective Use of NPs in Medicine 91
Conclusion 101
References 102
3 Superparamagnetic Composite-Based GO/rGO for the Multimode Biomedical Applications 111
Introduction 111
The Superparamagnetism Phenomenon 112
Importance of Graphene and GO/rGO-Related Materials 112
Carbon Materials 112
Graphene Oxide (GO) and Reduced Graphene Oxide (rGO) 114
Superparamagnetic Composites 114
Synthesis of GO/rGO 115
Hummers’ Method of Synthesis of GO 117
Fabrication of Smart Magnetite/Reduced Graphene Oxide Composite 118
Importance of Magnetic Composites in Biomedicine 119
Biomedical Applications of Superparamagnetic Composites Based on GO/rGO 120
Magnetic Resonance Imaging 120
Drug Delivery 121
Conclusion 126
References 127
4 Gadolinium-Doped Iron Nanostructures Decorated with Novel Drugs for Magnetic Resonance Imaging, Photodynamic, and Photothermal Therapy Applications 129
Introduction 130
Photodynamic Therapy 131
Advantages of PDT 131
Laser Interactions with Tissues 132
Laser Tissue-Heat Equation 132
Tissue Heating by Laser Radiation 133
Optical Transition in Molecules 133
The Science of PDT 135
Necrosis 135
Apoptosis 135
Vascular Effects 135
Types of Reaction 136
Role of Drugs in Photodynamic Therapy 137
Types of Drugs 138
Pharmacokinetics of PDT Drugs 138
Photosensitizers in Photodynamic Therapy 139
Role of Nanomaterials in Photodynamic Therapy 144
Role of Magnetic Nanoparticles for Photothermal Therapy 145
Magnetic Resonance Imaging (MRI) 146
Synthesis and Characterization of PEG-co-PAA Blend of Gadolinium-Doped Iron 147
Magnetic Resonance Measurements with Clinical MRI 158
Conclusion 160
References 161
5 Magnetic Nano- and Microparticles in Life Sciences and Medical Imaging 168
Introduction 168
A Reductionist View: Going from Microscale to Nanoscale 170
Principles of Magnetism 170
Magnetic Properties 170
Magnetic Polymer Nano- and Microspheres 173
Preparation of Magnetic Nanoparticles 173
Preparation of Magnetic Microspheres 176
Surface Modification of the Nano- and Microspheres and Their Interaction with Environment 181
Colloidal Stability 182
Carboxyl and Amino Group-Containing Particles 184
Antifouling Properties 184
Surface Coatings 186
Physicochemical Characterization of the Magnetic Particles 195
Transmission Electron Microscopy 195
Dynamic Light Scattering (DLS) 196
Atomic Absorption Spectroscopy and Thermogravimetric Analysis 196
Inductively Coupled Plasma Mass Spectroscopy 196
Determination of Fe2+ Release from the Nanoparticles 196
Fourier-Transform Infrared Spectroscopy 197
X-Ray Photoelectron Spectroscopy 197
Crystallographic Analysis 197
Magnetic Properties 197
Magnetic Resonance Relaxometry and MR Imaging (MRI) 197
Flow Cytometry 198
Toxicity of the Particles 198
Cell Viability 198
Oxidative Stress 199
Real-Time Polymerase Chain Reaction (qPCR) 200
Biomedical Applications of Magnetic Nano- and Microspheres 201
Diagnostics 201
Treatment 212
Separation of Biomolecules 215
Outlook 219
References 220
6 Superparamagnetic Iron Oxide Nanoparticles (SPIONs) as Multifunctional Cancer Theranostics 229
Introduction 230
SPIONs Design for Cancer Theranostics 230
SPIONs Structure and Types 231
SPIONs Synthesis Methods 232
SPIONs Capping 236
SPIONs and Therapeutic Payload 237
Role of SPIONs in Cancer Theranostics 237
SPIONs in Diagnosis by MRI 238
SPIONs in Cancer Treatment 239
SPIONs Coinciding with Other Therapeutic Agents 239
Other Usages of SPIONs in Biomedical Applications 241
SPIONs for Alzheimer’s Disease Diagnosis and Therapy 241
SPIONs Against Bacterial Diseases 242
Conclusion 242
References 243
7 Ferrite Nanoparticles for Biomedical Applications 248
Introduction 248
Ferrite-Based Materials 250
Cobalt Ferrite 251
Nickel Ferrite 253
Zinc Ferrite 253
Mixed Ferrites 255
Conventional Synthesis Protocols 256
Wet Chemical-Based Seed-Mediated Growth Toward Functional Hybrids 256
Sol-Gel Process 257
Hydrothermal Approach 258
Microwave-Assisted Synthesis 259
Biomedical Applications of Ferrite-Based Nanohybrids 260
Therapeutic Uses of MNPs 261
Magnetic Resonance Imaging 261
Magnetic Hyperthermia in Cancer Therapy 262
Magnetic NPs in Targeted Drug Delivery 263
Conclusion and Future Prospects 264
References 266
8 Target Delivery of Iron Oxide Magnetic Nanoparticles for Imaging and Treatment 271
Introduction 271
Passive Targeting (EPR Effect) 273
Active Targeting 275
Ligand Facilitated Active Targeting 275
Magnetic Targeting 280
Conclusion and Perspectives 283
References 284
9 Design of Magnetic-Luminescent Nanoplatforms: Applications in Theranostics and Drug Delivery 290
Introduction 290
Nanoscale Functional Materials 290
Bifunctionality at Nanoscale 291
Major Challenges for Magnetic-Luminescent Bifunctional Nanoparticles 294
Lanthanides and Luminescence Mechanism Involved in Bifunctional Materials 296
Upconversion Process 297
Downconversion/Quantum Cutting Process 298
Design of Magnetic up/Downconversion Luminescent Nanomaterials 300
Synthesis of Single Component Magnetic-Luminescent Nanoparticles 300
Synthesis of Multi-component Magnetic-Luminescent Nanoparticles 302
Synthesis of Iron Oxide/NaGdF4:Ln3+ 303
Biomedical Applications 307
Bioimaging 307
Drug Delivery 309
Therapy 311
Conclusions and Prospectus 312
References 312
10 Evaluation of Hyperthermic Properties of Magnetic Nano-Heterostructures Based on Gold-Iron Oxide and Noble Metal-Ferrite Systems 319
Introduction 320
Heat Generation Mechanism 321
Eddy Current Losses 321
Hysteresis Loss 322
Néel and Brownian Relaxation Mechanisms 323
Specific Absorption Rate (SAR) 324
Calorimetric Method 325
Magnetometric Method 327
Assessing the Hyperthermic Properties of Magnetic Nano-Heterostructures 327
Conclusion 333
References 333
11 Thermal Response of Iron Oxide and Metal-Based Iron Oxide Nanoparticles for Magnetic Hyperthermia 335
Introduction 335
Types of Iron Oxide NPs 337
Hematite (?-Fe2O3) 337
Maghemite (?-Fe2O3) 338
Magnetite (Fe3O4) 339
Doped Iron Oxide NPs 339
Cobalt-Doped Iron Oxide NPs 339
Copper-Doped Iron Oxide NPs 340
Mn-Doped Iron Oxide NPs 341
Synthesis of Iron Oxide NPs 342
Chemical Co-precipitation Method 342
Thermal Decomposition Method 343
Microwave-Assisted Method 344
Sonolysis Method 344
Laser-Assisted Synthesis 345
Thermal Response Mechanisms of Magnetic NPs 346
Eddy Current 346
Hysteresis Losses 347
Neel and Brownian Relaxations 349
Ferrofluids for Hyperthermia 350
Conclusion 352
References 353
12 Manganite Pervoskite Nanoparticles: Synthesis, Heating Mechanism, Toxicity, and Self-regulated Hyperthermia 359
Introduction 359
Properties of LSMO Nanoparticles 362
Synthesis of LSMO Nanoparticles 363
Combustion Methods 363
Sol–Gel Method 365
Citrate Gel Method 366
Thermal Decomposition Methods 367
Coatings 368
Heating Mechanism 369
LSMO Nanoparticles for Magnetic Fluid Hyperthermia 369
Self-controlled Hyperthermia 370
Drug Loading and Combinational Therapy Using LSMO Nanoparticles 371
Fluorescence Imaging and MRI Contrast Agents 373
Förster Resonance Energy Transfer (FRET) Using LSMO Nanoparticles 374
Toxicity Study 375
Conclusion 378
References 378
13 Toxicity Assessment of Nanomaterials 384
Introduction 384
Nanomaterial Definition and the “Nano” Hazard 385
Nanomedicine 386
Exposure Pathways to Nanomaterials and Possible End Locations in the Body 387
The Immune Response and the Mononuclear Phagocytic System (MPS) 388
Opsonization and How to Evade It 389
From Extravasation of Nanoparticles to Uptake by Cells 390
Consequences of Cell–Nanomaterial Interactions 391
Nanoparticle Uptake by Cells 395
Nanomaterial Properties Affecting Cells and Organs 396
Magnetic Nanomaterials and Their Applications in Nanomedicine 400
Further Considerations 402
In Vitro Evaluation of Cytotoxicity 403
Tetrazolium Salt-Based Assays 404
Resazurin-Based Assay 408
ATP–Luciferase Assay 409
Neutral Red Uptake Assay (NRU Assay) 410
Sulforhodamine B Assay (SRB Assay) 411
Lactate Dehydrogenase Assay (LDH Assay) 412
In Vitro Evaluation of Genotoxicity 413
Comet Assay 413
Micronucleus Assay 415
The Use of 3D Cultures 416
3D Culture Systems to Test Magnetic Nanoparticle Toxicity 417
Magnetic Nanoparticle Toxicity in 3D Culture 419
In Vivo Evaluation of Toxicity 422
Relevance of in Vivo Assays 422
Animal Models to Test in Vivo Magnetic NP Toxicity 423
Administration Routes and Fate of NP In Vivo 424
Methods for In Vivo Toxicity Evaluation 425
Conclusion and Future Perspectives 430
References 431
14 Persistence, Toxicity, and Biodegradation of Gold- and Iron Oxide-Based Nanoparticles in the Living Systems 448
Introduction 448
In Vivo Fate and Distribution of Gold- and Iron Oxide-Based Nanomaterials as Tunable Tools Toward Biomedical Applications 450
Primary Interaction of NPs with Biological Medium 450
In Vivo Exposure of Gold- and Iron Oxide-Based Nanomaterials 451
Pharmacokinetics of Gold- and Iron Oxide-Based Nanomaterials 453
Biodistribution of Nanomaterials Administered Through Different Routes of Administration 453
Clearance Routes 455
Parameters Affecting the Blood Clearance Pharmacokinetics 457
Methods Used for Determining the Biodistribution and Pharmacokinetics of Iron- and Gold-Based Nanomaterials 460
Fate and Biodegradation of Gold- and Iron Oxide-Based Nanoparticles 462
Degradation of Surface Coatings 462
Toxicity of Gold- and Iron Oxide-Based Nanoparticles 464
Future Outcomes and Conclusion 469
References 469
15 Multiple Myeloma: Role of Magnetic Nanoparticles 480
Introduction 480
Difficulties Associated with Proper Diagnosis of MM 481
Nanomedicine and Magnetic Nanoparticles 485
Magnetic Nanoparticles (MNPs): Biodistribution, Pharmacokinetics, and Toxicity 487
Targeting MNPs to Tumors 489
Magnetic Triggered Drug Release in MNPs 490
Other Nanoparticles 492
References 493
Erscheint lt. Verlag | 2.3.2020 |
---|---|
Reihe/Serie | Nanomedicine and Nanotoxicology | Nanomedicine and Nanotoxicology |
Zusatzinfo | VIII, 494 p. 176 illus., 147 illus. in color. |
Sprache | englisch |
Themenwelt | Medizin / Pharmazie ► Medizinische Fachgebiete ► Onkologie |
Technik ► Maschinenbau | |
Schlagworte | Bio-transformations and recycling • Combined magnetic and photothermal hyperthermia • Contrast Agent and Magnetic Resonance Imaging • Early Cancer detection • Ferrite based nanomaterials • Magnetic-fluorescent nanohybrids • Nanoscale magnetism • Pharmacokinetics, distribution and clearance • Preclinical trials • T1 and T2 weighted images |
ISBN-10 | 3-030-39923-0 / 3030399230 |
ISBN-13 | 978-3-030-39923-8 / 9783030399238 |
Haben Sie eine Frage zum Produkt? |
Größe: 19,5 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich