Multifunctional Antennas and Arrays for Wireless Communication Systems
Wiley-IEEE Press (Verlag)
978-1-119-53505-8 (ISBN)
Multifunctional Antennas and Arrays for Wireless Communication Systems is a comprehensive reference on state-of-the-art reconfigurable antennas and 4G/5G communication antennas. The book gives a unique perspective while giving a comprehensive overview of the following topics:
Frequency reconfigurable antennas
Pattern reconfigurable antennas
Polarization reconfigurable antennas
Reconfigurable antennas using Liquid Metal, Piezoelectric, and RF MEMS
MIMO and 4G/5G wireless communication antennas
Metamaterials and metasurfaces in reconfigurable antennas
Multifunctional antennas for user equipments (UEs)
Defense related antennas and applications
Flat panel phased array antennas
The book is a valuable resource for the practicing engineer as well as for those within the research field. As wireless communications continuously evolves, more and more functionally will be required, and thus multifunctional antennas and RF systems will be necessary. These multifunctional antennas will require a degree of reconfigurability, and this book discusses various methods which enable this. The main topics of frequency, pattern, and polarization reconfigurability is first discussed. Methods utilizing unique materials and devices, both real and artificial are discussed. The book also delves into 4G/5G antennas as it relates to MIMO, and millimeter-wave phased arrays. Finally, there is a section on defense related multifunctional RF antenna systems.
Satish K. Sharma, PhD, is a Professor in the Department of Electrical and Computer Engineering at the San Diego State University (SDSU), San Diego, California, USA. He is also Director of the Antenna and Microwave Laboratory (AML) at the SDSU. He served as the Associate Editor (AE) for the IEEE Transactions on Antennas and Propagation and is now serving as the AE for the IEEE Antennas and Wireless Propagation Letters. He is a Senior Member of the IEEE and URSI. Jia-Chi S. Chieh, PhD, has been working in the area of Antennas and RF Wireless Communications at the Naval Information Warfare Center in San Diego since 2004. He is also an Adjunct Faculty member at the SDSU with the Antenna and Microwave Laboratory (AML). Dr. Chieh has worked extensively in the area of phased array antennas over the past decade. He is a Senior Member of the IEEE.
List of Contributors xi
Preface xii
Acknowledgements xv
1 Introduction 1
Satish K. Sharma and Jia-Chi S. Chieh
1.1 Introduction 1
1.2 Antenna: an Integral Component of Wireless Communications 1
1.3 Antenna Performance Parameters 2
1.4 Antenna Types 2
1.5 Multifunctional Antennas 3
1.6 Reconfigurable Antennas 6
1.7 Frequency Agile/Tunable Antenna 13
1.8 Antenna Measurements 17
1.9 Conclusion 18
References 18
2 Frequency Reconfigurable Antennas 19
Saeed I. Latif and Satish K. Sharma
2.1 Introduction 19
2.2 Mechanism of Frequency Reconfigurability 20
2.3 Types of FRAs 21
2.3.1 Frequency Reconfigurability by Switches/Tunable Components 21
2.3.1.1 Electrical Switches 22
2.3.1.2 Varactor Diodes 31
2.3.1.3 Micro-Electro-Mechanical-System (MEMS) Switches 40
2.3.1.4 Optical Switches 40
2.3.1.5 Ground Plane Membrane Deflection 43
2.3.2 Frequency Reconfigurability Using Special Materials 43
2.3.2.1 Liquid Crystals 45
2.3.2.2 Graphene 47
2.3.3 Frequency Reconfigurability by Mechanical Changes 49
2.3.3.1 Actuators 49
2.3.3.2 Motors 50
2.3.4 Frequency Reconfigurability Using Special Shapes 53
2.3.4.1 Origami Antennas 53
2.3.4.2 Fractal Shapes 54
2.4 FRAs in the Future: Applications in Emerging Technologies 58
2.5 Conclusion 59
References 59
3 Radiation Pattern Reconfigurable Antennas 67
Sima Noghanian and Satish K. Sharma
3.1 Introduction 67
3.2 Pattern Reconfigurable by Electronically Changing Antenna Elements 67
3.3 Pattern Reconfigurable by Electronically Changing Feeding Network 88
3.4 Mechanically Controlled Pattern Reconfigurable Antennas 90
3.5 Arrays and Optimizations 98
3.6 Reconfigurable Wearable and Implanted Antennas 110
3.7 Conclusion 119
References 119
4 Polarization Reconfigurable Antennas 122
Behrouz Babakhani and Satish K. Sharma
4.1 Introduction 122
4.2 Polarization Reconfiguration Mechanism Using RF Switches 124
4.3 Solid-State RF Switch-Based Polarization Reconfigurable Antenna 125
4.4 Mechanical and Micro-electro-mechanical (MEMS) RF Switch-Based Antennas 140
4.5 Switchable Feed Network-Based Polarization Reconfiguration 148
4.6 Polarization Reconfigurable Antennas Using Metasurface 157
4.7 Other Methods to Create Polarization Reconfigurable Antennas 162
4.8 Conclusion 169
References 169
5 Liquid Metal, Piezoelectric, and RF MEMS-Based Reconfigurable Antennas 172
Jia-Chi S. Chieh and Satish K. Sharma
5.1 Introduction 172
5.2 Liquid Metal – Frequency Reconfigurable Antennas 172
5.3 Liquid Metal – Pattern Reconfigurable Antennas 175
5.4 Liquid Metal – Directivity Reconfigurable Antennas 182
5.5 Piezoelectric – Pattern Reconfigurable Array 184
5.6 RF MEMS – Frequency Reconfigurable 189
5.7 RF MEMS – Polarization Reconfigurable 191
5.8 RF MEMS – Pattern Reconfigurable 194
5.9 Conclusion 196
References 197
6 Compact Reconfigurable Antennas 198
Sima Noghanian and Satish K. Sharma
6.1 Introduction 198
6.2 Reconfigurable Pixel Antenna 199
6.3 Compact Reconfigurable Antennas Using Fluidic 209
6.4 Compact Reconfigurable Antennas Using Ferrite and Magnetic Materials 213
6.5 Metamaterials and Metasurfaces 224
6.6 Conclusion 229
References 229
7 Reconfigurable MIMO Antennas 232
Kumud R. Jha and Satish K. Sharma
7.1 Introduction 232
7.2 Reconfigurable Antennas for MIMO Applications 234
7.3 Isolation Techniques in MIMO Antennas 237
7.3.1 Decoupling Network 237
7.3.2 Neutralization Lines 238
7.3.3 Using Artificial Material 240
7.3.4 Defected Ground Plane 241
7.4 Pattern Diversity Scheme 241
7.5 Reconfigurable Polarization MIMO Antenna 244
7.6 MIMO Antenna Performance Parameters 254
7.6.1 Envelope Correlation Coefficient (ECC) 254
7.6.2 Total Active Reflection Coefficient (TARC) 255
7.6.3 Mean Effective Gain (MEG) 256
7.6.4 Diversity Gain 257
7.7 Some Reconfigurable MIMO Antenna Examples 258
7.8 Conclusion 274
References 274
8 Multifunctional Antennas for 4G/5G Communications and MIMO Applications 279
Kumud R. Jha and Satish K. Sharma
8.1 Introduction 279
8.2 MIMO Antennas in Multifunctional Systems 281
8.3 MIMO Antennas in Radar Systems 284
8.4 MIMO Antennas in Communication Systems 290
8.5 MIMO Antennas for Sensing Applications 290
8.6 MIMO Antennas for 5G Systems 292
8.7 Massive MIMO Array 293
8.8 Dielectric Lens for Millimeter Wave MIMO 298
8.9 Beamforming in Massive MIMO 301
8.10 MIMO in Imaging Systems 303
8.11 MIMO Antenna in Medical Applications 306
8.11.1 Ex-VIVO Applications 306
8.11.2 MIMO Antenna for Medical Imaging 309
8.11.3 Wearable MIMO Antenna 309
8.11.4 MIMO Indigestion Capsule 310
8.11.5 Reconfigurable Antennas in Bio-Medical Engineering 313
8.12 Conclusion 316
References 317
9 Metamaterials in Reconfigurable Antennas 321
Saeed I. Latif and Satish K. Sharma
9.1 Introduction 321
9.2 Metamaterials in Antenna Reconfigurability 321
9.3 Metamaterial-Inspired Reconfigurable Antennas 322
9.3.1 Metamaterial-Based Frequency Reconfigurability 323
9.3.2 Metamaterial-Based Pattern Reconfigurability 325
9.3.3 Metamaterial-Based Polarization Reconfigurability 328
9.4 Metasurface-Inspired Reconfigurable Antennas 333
9.5 Conclusion 336
References 337
10 Multifunctional Antennas for User Equipments (UEs) 341
Satish K. Sharma and Sonika P. Biswal
10.1 Introduction 341
10.2 Lower/ Sub-6 GHz 5G Band Antennas 342
10.3 5G mm-Wave Antenna Arrays 353
10.4 Collocated Sub-6 GHz and mm-Wave 5G Array Antennas 360
10.5 RF and EMF Exposure Limits 369
10.6 Conclusion 374
References 374
11 DoD Reconfigurable Antennas 378
Jia-Chi S. Chieh and Satish K. Sharma
11.1 Introduction 378
11.2 TACAN 378
11.2.1 TACAN Antenna 379
11.2.2 Course Bearing 382
11.2.3 Fine Bearing 382
11.3 Sea-Based X-Band Radar 1 (SBX-1) 383
11.4 The Advanced Multifunction RF Concept (AMRFC) 384
11.5 Integrated Topside (InTop) 390
11.5.1 Wavelength Scaled Arrays 390
11.5.2 Low-Cost Multichannel Microwave Frequency Phased Array Chipsets on Si and SiGe 394
11.6 DARPA Arrays of Commercial Timescales (ACT) 400
11.7 AFRL Transformational Element Level Array (TELA) 405
11.8 Conclusion 406
References 408
12 5G Silicon RFICs-Based Phased Array Antennas 409
Jia-Chi S. Chieh and Satish K. Sharma
12.1 Introduction 409
12.2 Silicon Beamformer Technology 409
12.3 LO-Based Phase Shifting 413
12.4 IF-Based Phase Shifting 414
12.5 RF-Based Phase Shifting 415
12.6 Ku-Band Phased Arrays Utilizing Silicon Beamforming Chipsets 422
12.7 Ku-Band Phased Arrays on ROHACELL Utilizing Silicon Beamforming Chipsets 425
12.8 Ku-Band Phased Arrays with Wide Axial Ratios Utilizing Silicon Beamforming Chipsets 431
12.9 28GHz Phased Arrays Utilizing Silicon Beamforming Chipsets 433
12.10 Phased Array Reflectors Utilizing Silicon Beamforming Chipsets 438
12.11 Conclusion 442
References 443
Index 445
Erscheinungsdatum | 20.03.2020 |
---|---|
Reihe/Serie | IEEE Press |
Sprache | englisch |
Maße | 158 x 229 mm |
Gewicht | 862 g |
Themenwelt | Technik ► Elektrotechnik / Energietechnik |
Technik ► Nachrichtentechnik | |
ISBN-10 | 1-119-53505-0 / 1119535050 |
ISBN-13 | 978-1-119-53505-8 / 9781119535058 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich