Development of a non-contact EEG hat using textile capacitive electrodes - Sara Nazari Asl

Development of a non-contact EEG hat using textile capacitive electrodes

(Autor)

Buch
120 Seiten
2019 | 1. Aufl.
Mensch & Buch (Verlag)
978-3-96729-015-8 (ISBN)
79,90 inkl. MwSt
  • Keine Verlagsinformationen verfügbar
  • Artikel merken
Non-contact capacitive electrodes for bioelectric diagnostics provide an interesting alternative to classical galvanically coupled electrodes. Such a low cost diagnostic system can be applied without preparation time and in mobile wireless environments. For even higher user comfort textile capacitive electrodes are preferable.
In this work, a comprehensive model for the electronic noise properties and frequency dependent responses of PCB-based, as well as textile noncontact capacitive electrodes, is presented. A thorough study of the influence of the electrical components on the resulting noise properties of these electrodes, is provided by independently measuring the corresponding noise spectra. The most important low frequency noise source of capacitive electrode is the necessary high input bias resistance, which in combination with the input capacity, results in an apparent 1/f 2-power noise spectrum. By comparing the noise measurements with the theoretical noise model of the electrode, it is concluded that the surface of the electrode contributes to an additional 1/f-power noise. It is also found that the highest possible coupling capacitance is most favorable for low noise behavior. Therefore, we implemented electrodes with electrically conducting fabric surfaces. With these electrodes, it is possible to enlarge the surface of the electrode while simultaneously maintaining a small distance between the body and the electrode over the whole surface area, thus maximizing the capacitance. We also show that the use of textile capacitive electrodes, reduces the noise considerably.
Furthermore, this thesis describes the construction of a capacitive noncontact textile electroencephalography measuring hat (cEEG hat) with seven measuring channels. This hat benefits from the low noise characteristics of the integrated developed textile capacitive electrodes. The measured noise spectrum of this cEEG hat shows low noise characteristics with a voltage noise density of 10 μV/ Hz at 1 Hz and 1.5 μV/ Hz at 20 Hz. This fulfills many requirements for measuring brain signals.
The implemented cEEG hat is comfortable to wear during very long measurements and even during sleep periods. In contrast to common methods, the cEEG hat provides a possibility of measuring EEG signal during sleep outside laboratories and in the comfort of home. EEG sleep measurements shown in this work, are recorded inside a normal apartment. The possibility of brain computer interface application is also shown by measuring steady state visually evoked potentials (SSVEP) at different frequencies.
Erscheinungsdatum
Reihe/Serie Elektrische Messtechnik und Grundlagen der Elektrotechnik ; 66
Verlagsort Berlin
Sprache englisch
Maße 148 x 210 mm
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte electronic noise properties • frequency dependent responses • noise properties • Non-contact capacitive electrodes • non-contact EEG hat • PCB-based Electrodes • textile capacitive electrodes • textile noncontact capacitive electrodes
ISBN-10 3-96729-015-8 / 3967290158
ISBN-13 978-3-96729-015-8 / 9783967290158
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
DIN-Normen und Technische Regeln für die Elektroinstallation

von DIN; ZVEH; Burkhard Schulze

Buch | Softcover (2023)
Beuth (Verlag)
86,00
Wegweiser für Elektrofachkräfte

von Gerhard Kiefer; Herbert Schmolke; Karsten Callondann

Buch | Hardcover (2024)
VDE VERLAG
48,00