Optimization of Power System Problems (eBook)

Methods, Algorithms and MATLAB Codes
eBook Download: PDF
2020 | 1st ed. 2020
XII, 382 Seiten
Springer International Publishing (Verlag)
978-3-030-34050-6 (ISBN)

Lese- und Medienproben

Optimization of Power System Problems -
Systemvoraussetzungen
171,19 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book presents integrated optimization methods and algorithms for power system problems along with their codes in MATLAB. Providing a reliable and secure power and energy system is one of the main challenges of the new era. Due to the nonlinear multi-objective nature of these problems, the traditional methods are not suitable approaches for solving large-scale power system operation dilemmas. The integration of optimization algorithms into power systems has been discussed in several textbooks, but this is the first to include the integration methods and the developed codes. As such, it is a useful resource for undergraduate and graduate students, researchers and engineers trying to solve power and energy optimization problems using modern technical and intelligent systems based on theory and application case studies. It is expected that readers have a basic mathematical background.

Introduction 6
Motivation 6
A Brief Overview of the Book Covered Topics 6
The Book Organization 6
Contents 11
Modelling for Composite Load Model Including Participation of Static and Dynamic Load 13
1 Introduction 14
2 Classification of Load Model 15
2.1 Connected Load 16
2.2 Demand Load 16
2.3 Base Load 16
2.4 Peak Load 17
2.5 Average Load 17
3 Structure of Loads Model 17
3.1 Structure for Static Load Model 19
3.2 Structure of Dynamic Load 24
3.3 Structure of Aggregate Load 38
4 Modelling for Composite Load Model 42
4.1 Development of Mathematical Model for Static Load 44
4.2 Development of Mathematical Model for Dynamic Load 46
5 Conclusion 57
References 59
A Novel Forward-Backward Sweep Based Optimal DG Placement Approach in Radial Distribution Systems 61
1 Motivation and Literature Review 62
2 Optimal DG allocation problem 65
2.1 FBS power flow 65
2.2 Total active power loss, bus voltage limit, and feeder current capacity 66
3 Proposed Algorithm and Illustrative Example 67
4 Conclusions 72
References 72
Optimal Capacitor Placement in Distribution Systems Using a Backward-Forward Sweep Based Load Flow Method 74
1 Introduction 75
2 Mathematical modeling of load flow based optimization problem 77
2.1 Forward-backward load flow 77
2.2 Optimal places for installation of capacitor banks 78
3 Illustrative Example 79
4 Conclusions 84
References 84
Optimal Capacitor Placement and Sizing in Distribution Networks 86
1 Introduction 87
2 Reactive Power Compensation 88
2.1 Benefit of Reactive Power Compensation 88
2.2 Disadvantages of Reactive Power Compensation 90
3 Literature Review 91
3.1 Analytical Approaches 91
3.2 Numerical Computation Algorithms 92
3.3 Artificial Intelligent Algorithms 93
4 Problem Formulation 93
4.1 Objective Function 93
4.2 Constraints 94
5 Modeling and Optimization Algorithm 94
5.1 Teaching and Learning Based Optimization Algorithm 94
5.2 Matching TLBO with Capacitor Placement Problem 97
5.3 Load Model 97
6 Numerical Results 98
6.1 Test Cases 98
6.2 10-Bus Test Case 99
6.3 33-Bus Test Case 99
7 Conclusion 102
MATLAB Code 103
References 110
Binary Group Search Optimization for Distribution Network Reconfiguration 113
1 Literature Review 114
2 Group Search Optimization Algorithm (GSO) 114
2.1 Basics of GSO 115
2.2 Binary Group Search Optimization (BGSO) 117
3 Problem Formulation 124
4 Developed Source Code 127
5 Test Results 131
5.1 69-Node System 131
5.2 119-Node System 131
6 Conclusion 132
MATLAB Code 134
References 135
Combined Heat and Power Economic Dispatch Using Particle Swarm Optimization 137
1 Introduction 138
2 Background 139
3 Problem Formulation 139
3.1 Objective Function 139
3.2 Constraints 140
3.3 Particle Swarm Optimization 141
4 Simulation, Results and Discussion 142
5 Conclusion 142
MATLAB Codes 146
References 151
Combined Heat and Power Stochastic Dynamic Economic Dispatch Using Particle Swarm Optimization Considering Load and Wind Power Uncertainties 152
1 Introduction 154
2 Background 154
3 Uncertainty Modeling 155
3.1 Scenario Generation 155
3.2 Scenario Reduction 157
4 Stochastic Dynamic Economic Dispatch 158
4.1 Objective Function 158
4.2 Constraints 159
4.3 Wind Turbine Formulation 160
4.4 Particle Swarm Optimization 160
5 Simulation, Results, and Discussion 161
6 Conclusions 164
MATLAB Codes 165
References 177
Economic Dispatch of Multiple-Chiller Plants Using Wild Goats Algorithm 179
1 Motivation and Literature Review 180
2 Problem Formulation 181
2.1 Economic Dispatch of Multiple-Chiller Systems 181
2.2 Proposed Optimization Algorithm 182
3 Case Studies and Discussions 183
4 Conclusion 190
MATLAB Codes 191
References 201
Optimization of Tilt Angle for Intercepting Maximum Solar Radiation for Power Generation 203
1 Introduction 203
2 Methodology 204
2.1 Optimum Tilt Angle Determination 204
3 Results and Discussion 206
4 Conclusions 206
MATLAB Code 218
References 220
Probabilistic Power Flow Analysis of Distribution Systems Using Monte Carlo Simulations 222
1 Introduction 223
2 Problem Formulation 225
2.1 Forward-Backward Sweep Algorithm 225
2.2 Monte Carlo Simulations 226
3 Proposed Approach and Case Study 227
4 Conclusion 230
MATLAB Code 231
References 238
Long-Term Load Forecasting Approach Using Dynamic Feed-Forward Back-Propagation Artificial Neural Network 240
1 Introduction 241
2 Problem Formulation 243
2.1 Artificial Neural Network (ANN) 243
2.2 Dynamic Artificial Neural Network (DANN) 245
2.3 Back Propagation Technique (BP) 245
2.4 Levenberg Marquardt Algorithm (LM) 248
2.5 Bayesian Regularization (BR) 249
2.6 Scaled Conjugated Gradient (SCG) 250
3 Numerical Result and Discussions 251
3.1 Resiliency of Hybrid Proposed Strategy 251
3.2 Robustness and Scalability 252
4 Conclusion 257
MATLAB Code 258
References 262
Multi-objective Economic and Emission Dispatch Using MOICA: A Competitive Study 265
1 Introduction 266
2 Problem Description 267
2.1 Equalities and Inequalities Constraints 268
3 Multi-objective Optimization Algorithm 269
3.1 The Imperialist Competitive Algorithm 270
3.2 The MOICA 271
3.3 Selecting the Best Compromise Solution 273
4 The Numeric Results 273
4.1 Initialization of Algorithm 274
4.2 The Simulation Results 274
5 Conclusion 276
MATLAB Codes 279
References 316
Voltage Control by Optimized Participation of Reactive Power Compensation Using Fixed Capacitor and STATCOM 318
1 Role of Reactive Power Compensation 319
2 Introduction to Reactive Power Compensators 321
2.1 Introduction to Reactive Power Market 322
2.2 Selection of Dynamic and Static Compensator 324
3 Reactive Power Compensation Cost Analysis 326
3.1 Reactive Power as an Ancillary Service 326
3.2 Pricing Options in Reactive Power Compensation 327
3.3 Synchronous Generator as Reactive Power Service Provider 328
3.4 Fixed Capacitor as Reactive Power Service Provider 330
3.5 STATCOM as Reactive Power Service Provider 331
4 Reactive Power Compensation Scheme in Ihes 332
5 Simulink Model Representation for IHES 334
5.1 Modelling for Reactive Power Balance in IHES 335
5.2 Synchronous Generator Model Equations 336
5.3 Induction Generator Model Equations 337
5.4 Fixed Capacitor Model Equations 339
5.5 STATCOM Model Equations 340
6 Importance of Dynamic Compensator for Voltage Control 351
7 Optimization of Reactive Power Participation 352
8 Conclusion and Future Scope 364
References 366
Backward-Forward Sweep Based Power Flow Algorithm in Distribution Systems 369
1 Introduction 370
2 Forward-Backward Sweep Power Flow 371
3 Case Study and Discussions 372
4 Conclusion 373
MATLAB Code 378
References 385

Erscheint lt. Verlag 6.1.2020
Reihe/Serie Studies in Systems, Decision and Control
Studies in Systems, Decision and Control
Zusatzinfo XII, 382 p.
Sprache englisch
Themenwelt Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Optimal Planning • Power Flow • Power Systems • Power Systems Control • Smart Grids
ISBN-10 3-030-34050-3 / 3030340503
ISBN-13 978-3-030-34050-6 / 9783030340506
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 16,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten

von Jörg Laumann; Markus Feldmann; Jörg Frickel …

eBook Download (2022)
Springer Fachmedien Wiesbaden (Verlag)
119,99