Magnetic Material for Motor Drive Systems (eBook)
IX, 440 Seiten
Springer Singapore (Verlag)
978-981-329-906-1 (ISBN)
This book focuses on how to use magnetic material usefully for electrical motor drive system, especially electrical vehicles and power electronics. The contents have been selected in such a way that engineers in other fields might find some of the ideas difficult to grasp, but they can easily acquire a general or basic understanding of related concepts if they acquire even a rudimentary understanding of the selected contents.The cutting-edge technologies of magnetism are also explained. From the fundamental theory of magnetism to material, equipment, and applications, readers can understand the underlying concepts. Therefore, a new electric vehicle from the point of view of magnetic materials or a new magnetic material from the point of a view of electric vehicles can be envisioned: that is, magnetic material for motor drive systems based on fusion technology of an electromagnetic field. Magnetic material alone does not make up an electric vehicle, of course. Other components such as mechanical structure material, semiconductors, fuel cells, and electrically conductive material are important, and they are difficult to achieve. However, magnetic material involves one of the most important key technologies, and there are high expectations for its use in the future. It will be the future standard for motor-drive system researchers and of magneticmaterial researchers as well. This book is a first step in that direction.
Preface 6
Contents 8
Motor Drive System and Magnetic Material: Contents of This Book 11
1 Motor and Power Electronics and Magnetic Material [1–8] 11
2 Contents of This Book 14
References 16
General (Background of New Magnetic Material Requirement for Power Electronics Technology) 17
Technical Requirement to Magnetic Material in Motor Drive System 18
1 Introduction 18
2 Conventional Motor and Coming Power Electronics Excitation Motor [6–8] 20
3 What Is a Movement 22
4 Electrical Energy and Power Electronics Technology 23
5 High-Frequency Requirement and Magnetic Material in Power Electronics 26
6 Magnetic Material for Electrical Energy Application 31
7 Future Research of Electrical Motor 32
References 34
Fundamental Concept of Magnetic Material for Electrical Engineer 36
1 Multi-scale of Magnetic Material 36
1.1 Appearance of Magnetization 37
1.2 Magnetic Structure 38
1.3 Polycrystalline Body 40
1.4 Crystal Grain Control 41
2 Magnetization Process 42
3 Iron Loss 44
4 High-Frequency Magnetization 46
5 Mechanical Stress Influence 46
6 Magnetic Anisotropy 48
7 Magnetic Measurement 50
8 Information Magnetics and Power Magnetics 51
References 53
Fundamental Concept of Electrical Motor for Magnetic Researcher 54
1 Fundament Theory and Structure of Electrical Motor 54
2 Three-Phase Alternating Current and Traveling Magnetic Field 57
3 AC Motor [1–4] 65
4 Permanent Magnet Synchronous Motor (IPMSM, SPMSM) [5] 67
References 69
Fundamental Concept of Power Electronics for Magnetic Researcher 70
1 Summary of Power Electronics Technology [1, 2] 70
2 Switching Operation of Power Semiconductor 72
3 Inverter Circuit and Its Operation [3] 73
4 Significance of Power Electronics [4–6] 79
References 80
Fusion Science and Technology of Electromagnetic Field [1] 82
1 Introduction 82
2 Multi-scale, Multi-physics, and Multi-time (Fist Class Fusion) [1] 84
2.1 Electromagnetic Field Application [7–9] 84
2.2 Electromagnetic Materials [10, 11] 86
2.3 Electromagnetic Energy Apparatus 87
2.4 First-Class Fusion 88
3 Second-Class Fusion (Fusion of Purpose and Means) 89
References 90
Magnetic Material Excited by Power Electronics Equipment 91
Magnetic Property and Measurement Excited by PWM Inverter 92
1 Measurement Equipment of Magnetic Property Excited by Inverter 92
2 Minor Loop Generation in Inverter Excitation 94
3 Carrier Frequency Characteristics Under Inverter Excitation 96
4 Minor Loop Outbreak Due to On-Resistance of Power Semiconductor [4] 97
5 Power Semiconductor Property and Iron Loss [9] 100
6 Measurement Technology in Inverter Excitation [12] 103
7 Magnetic Characteristics Required for Magnetic Material [9, 10] 107
References 110
Iron Loss Measurement of Interior Permanent Magnet Synchronous Motor 112
1 Motor Characteristic and Experimental Methodology 112
1.1 Interior Permanent Magnet Motor Characteristics 112
1.2 Measurement Methodology 113
2 Calculation of the IPMSM Iron Losses by Finite Element Analysis 116
2.1 Calculation of the Hysteresis Losses 117
2.2 Calculation of the Eddy Current Losses 118
3 Effect of the PWM Carrier Frequency on the IPMSM Iron Losses 119
4 Effect of the PWM Modulation Index on the IPMSM Iron Losses 121
4.1 Analysis of the Phase Voltage and Current 122
4.2 Analysis of the Magnetic Flux Density 124
5 Effect of the Dead-Time on the IPMSM Iron Losses 125
6 Effect of the Load on the IPMSM Iron Losses 126
6.1 Analysis of the Phase Voltage 127
6.2 Analysis of the Phase Current 128
6.3 Analysis of the Magnetic Flux Density by Finite Element Analysis 130
References 132
Electrical Motor Applied by Low Iron Loss Magnetic Material 133
1 Introduction 133
2 Magnetic Anisotropic Motor Using Grain-Oriented Steel 135
3 Amorphous Motor [9–11] 139
4 Nanocrystal Motor [12] 142
References 145
Magnetism and Its Modelling 146
Origin of Magnetism 90 Years of Misunderstanding 147
1 Introduction 147
2 Difficulties in the Many-Body Problem 149
3 Truth Behind the Formation of Molecules and Crystals from Atoms 150
4 Even to Solve One Atom Is a Many-Body Problem 155
5 Virial Theorem 156
6 Heisenberg’s Exchange Interaction Cannot Explain the Origin of Magnetism-Explanation of Hund’s Rule for Atoms– 159
7 High Accuracy Calculation on Magnetism in Molecules 162
8 Cr@Sin Clusters 164
9 Conclusions—Seeking for a Satisfactory Condition 165
References 167
Magnetic Domain Structures and Techniques in Micromagnetics Simulation 169
1 Magnetic Structure of Grain-Oriented Electrical Steel (GOES) 169
2 Magnetic Domain and Domain Wall 170
3 Magnetization Processes 173
4 Micromagnetics Simulation 175
4.1 LL and LLG Equations 175
4.2 Effective Magnetic Field 177
5 Numerical Methods for First-Order Initial Value Problem 178
6 Magnetic Domain Structures Calculated by Using the LLG Equation 181
References 183
Polycrystalline Magnetic Calculation 184
1 Introduction 184
2 Polycrystalline Magnetic Analysis Model [3] 185
3 Model Validity Verification 189
References 192
Magnetic Hysteresis Represented by Play Model 193
1 Introduction 193
2 Play Model 194
3 Comparison with the Preisach Model 195
4 Identification of the Play Model 198
5 B-Input Play Model 199
6 Vector Play Model 200
6.1 Superposition of Scalar Models 200
6.2 Geometric Extension of the Scalar Model 201
6.3 Anisotropic Vector Play Model 202
References 204
From a Thermodynamic Model to a Magnetic Hysteresis Model 205
1 The Thermodynamics of Magnetic Materials 205
2 Free Energy and Hysteresis 209
3 A Friction Model of Hysteresis 211
Equivalent Circuit of AC Magnetic Fields 216
1 Eddy Current and Complex Permeability 216
2 Equivalent Circuit of Complex Permeability 219
3 Synthesis of Magnetic Fields 222
4 Modeling for Wire 223
5 Arbitrary Eddy-Current Field 225
References 227
Coupled Analysis of Semiconductor Characteristics and Magnetic Properties 228
1 Introduction 229
2 Semiconductor Characteristics and Magnetic Properties 229
2.1 Inverter Excitation and Magnetic Properties 229
2.2 Semiconductor Characteristics and Inverter Output Voltage 230
2.3 Output Voltage Waveform of Inverter and Minor Loop Shape 232
3 Calculation Method with Mutual Consideration on Semiconductor Characteristics and Magnetic Properties 234
3.1 Procedure (I) Generation of Ideal PWM Voltage Waveform 234
3.2 Procedure (II) Calculation of Magnetic Flux Density Waveform 234
3.3 Procedure (III) Magnetic Analysis with Consideration of Magnetic Hysteresis Characteristics 235
3.4 Procedure (IV) Calculation of Magnetic Field Strength Waveform 240
3.5 Procedure (V) Circuit Analysis with Consideration on On-Voltage Characteristics of Semiconductor Devices 241
3.6 Procedure (VI) Determination of Convergence 243
3.7 Procedure (VII) Overlap of on-Voltage Waveform on the Ideal Voltage Waveform 243
4 Calculation Example of Magnetic Characteristics Under Inverter Excitation Using Different Types of Semiconductor Components 243
References 245
Vector Magnetic Characteristic 246
1 Basic Concept 246
1.1 Standard Magnetic Measurement Method 249
1.2 Evaluation Magnetic Measurement Method 250
1.3 Utilizable Magnetic Measurement Method 250
2 Vector Magnetic Characteristics 251
3 Magnetic Characteristic Analysis 253
4 Summarize 255
References 257
Future Magnetic Material 259
History and Future of Soft and Hard Magnetic Materials 260
1 Soft and Hard Magnetic Materials 260
2 Soft Magnetic Materials 261
2.1 History of the Development of Soft Magnetic Materials [5–7, 12] 261
2.2 Permalloy [4, 12] 262
2.3 Sendust [5, 6, 12] 263
2.4 Si Steel (Magnetic Steel) [12] 263
2.5 Amorphous Alloys and Nanocrystalline Alloys [7] 264
2.6 Soft Ferrite 266
3 Hard Magnetic Materials [1, 2, 8–10] 266
3.1 Guidelines for Increasing Performance in Permanent Magnets [9] 266
3.2 History of the Development of Hard Magnetic Materials [8, 10, 11] 268
3.3 Ferrite Magnets [8, 10] 271
3.4 Nd–Fe–B Magnets [8, 10] 271
4 Future of Magnetic Materials 272
References 273
Low-Loss Soft Magnetic Materials 277
1 Typical Soft Magnetic Materials and Positioning 277
2 Amorphous Soft Magnetic Alloys 279
2.1 History of the Development of Amorphous Soft Magnetic Alloys 279
2.2 Production Method for Amorphous Soft Magnetic Alloy [4, 5] 280
2.3 Features of Amorphous Soft Magnetic Alloy 281
2.4 Application of Amorphous Soft Magnetic Alloy to Motors 284
3 Nanocrystalline Soft Magnetic Alloys 295
3.1 History of Development of Nanocrystalline Soft Magnetic Alloys 295
3.2 Production Method for Nanocrystalline Soft Magnetic Alloys 296
3.3 Magnetic Properties and Motor Application of Nanocrystalline Soft Magnetic Alloys 302
References 304
Nd–Fe–B-Based Sintered Magnet 306
1 Introduction 306
2 Basic Knowledge to Understand Nd–Fe–B-Based Sintered Magnets 308
2.1 General Indicators on the Characteristics of Permanent Magnets from a Practical Viewpoint 308
2.2 Factors that Determine the Characteristics of a Permanent Magnet 309
2.3 General Feature of Nd–Fe–B-Based Sintered Magnets 310
2.4 Nd2Fe14B Compound 311
2.5 Nd–Fe–B Ternary Phase Diagram 313
2.6 Manufacturing Process of Nd–Fe–B-Based Sintered Magnet 315
3 Technology for High-Performance Nd–Fe–B-Based Sintered Magnet 320
3.1 Technology for Obtaining High Br 320
3.2 Technology for Obtaining High HcJ 321
4 Summary 322
References 322
Bonded Rare Earth Permanent Magnets 325
1 Basic Characteristics of Magnets 325
2 Types of Magnet Powder 327
2.1 Isotropic Magnet Powder 327
2.2 Anisotropic Magnet Powder 331
2.3 Recent Development Trends 332
3 Binder 333
4 Molding Method 333
4.1 Compression Molding Method 334
4.2 Injection Molding Method 335
4.3 Other Molding Methods 338
5 Orientation Technology 338
6 Magnetizing Technique 340
7 Temporal Change of the Magnetic Flux 340
8 Temperature Characteristics 341
9 Surface Coating 341
10 Weather Resistance 342
References 342
The Rare Earths Problem for Permanent Magnets 345
1 Introduction 345
2 Typical Permanent Magnets and Rare Earth Elements Used Therein 348
2.1 Perspectives of the High Performance Iron-Based Permanent Magnets Containing Light Rare Earths 348
2.2 Nd–Fe–B Permanent Magnets Free from Heavy Rare Earth Elements 350
3 Required Properties of Permanent Magnets for Motor Applications 351
4 Perspectives of Materials Research Toward Solving the Rare Earth Issue in Permanent Magnets 352
References 353
High-Frequency Magnetics 354
1 Introduction 354
2 Soft Magnetic Thin Film Having Uniaxial Magnetic Anisotropy 355
2.1 Magnetization Rotation by Magnetization Hard Axis Excitation 357
2.2 Ferromagnetic Resonance Frequency 360
3 Development Example of Magnetic Thin-film Inductor 362
3.1 CoFeSiO/SiO2 Granular Magnetic Thin-film Inductor 362
3.2 High Q Inductor Using Magnetic Fine Particle Composite Material 365
4 Conclusions 368
References 368
Magnetic Application 370
Iron Loss Analysis of Motors 371
1 Introduction 371
2 Components of Iron Loss and Calculation Methods 372
3 Calculation Method of Motor Iron Loss Considering Harmonics 374
4 Calculation Method of Motor Iron Loss Considering Mechanical Stress 376
5 Example of Iron Loss Calculation of Motors [8] 378
References 383
Iron Loss of the Inductors 385
1 Magnetization of the Inductor in PWM Inverter 385
2 Measurement Method of Iron Loss Under Direct Magnetic Field Bias Condition 389
3 Iron Loss Calculation Method and Evaluation Method of Inductor 392
References 399
Application of Magnetism to Automobiles 400
1 “Run” 400
1.1 Fuel Injection Control 401
1.2 Ignition and Combustion Control 404
1.3 Transmission Control 407
1.4 Cooling 408
1.5 Starting and Power Supply 408
1.6 Drive Motor Control 409
2 “Turn” 410
3 “Stop” 412
4 Evolution of Magnetic Materials for Automobiles 413
Reference 414
Magnetic Application in Linear Motor 415
1 Introduction 415
2 Linear Motor and Linear Drive System 416
2.1 Classification of Linear Motors 416
2.2 Linear Drive System 416
2.3 Linear Induction Motor (LIM) 417
2.4 Linear DC Motor (LDM) 418
2.5 Linear Synchronous Motor (LSM) 419
2.6 Linear Stepping Motor (LSTM) 420
2.7 Linear Actuator 421
3 Characteristic Evaluation of Linear Motor 422
3.1 Thrust Constant 422
3.2 Motor Constant 422
3.3 Motor Constant Square Density 423
3.4 Power Rate 423
4 Magnetic Circuit for High-Performance LSM 423
4.1 Thrust and Normal Force 423
4.2 Arrangement of Permanent Magnet 424
4.3 Example of High-Performance LSM 425
4.4 Comparative Evaluation of High Performance 428
References 428
Final Remark 430
Erscheint lt. Verlag | 29.11.2019 |
---|---|
Reihe/Serie | Engineering Materials | Engineering Materials |
Zusatzinfo | IX, 440 p. 323 illus., 188 illus. in color. |
Sprache | englisch |
Original-Titel | Mota Kudo Shisutemu no tame no Jiseizairyo Katsuyo Gijutu |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Elektrodynamik |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Fahrzeugbau / Schiffbau | |
Technik ► Maschinenbau | |
Schlagworte | Energy magnetism • Magnetic materials for high frequency • Motor drive system • Power electronics technology • Smart electricity |
ISBN-10 | 981-329-906-1 / 9813299061 |
ISBN-13 | 978-981-329-906-1 / 9789813299061 |
Haben Sie eine Frage zum Produkt? |
Größe: 24,9 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich