Optimization in Machine Learning and Applications -

Optimization in Machine Learning and Applications (eBook)

eBook Download: PDF
2019 | 1st ed. 2020
IX, 197 Seiten
Springer Singapore (Verlag)
978-981-15-0994-0 (ISBN)
Systemvoraussetzungen
117,69 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book discusses one of the major applications of artificial intelligence: the use of machine learning to extract useful information from multimodal data. It discusses the optimization methods that help minimize the error in developing patterns and classifications, which further helps improve prediction and decision-making. The book also presents formulations of real-world machine learning problems, and discusses AI solution methodologies as standalone or hybrid approaches. Lastly, it proposes novel metaheuristic methods to solve complex machine learning problems. Featuring valuable insights, the book helps readers explore new avenues leading toward multidisciplinary research discussions.


Anand J. Kulkarni holds a Ph.D. in Distributed Optimization from Nanyang Technological University, Singapore; an M.S. in AI from the University of Regina, Canada; and Bachelor of Engineering from Shivaji University, India. He worked as a Research Fellow on a cross-border supply-chain disruption project at Odette School of Business, University of Windsor, Canada. Currently, he is the Head and an Associate Professor at the Symbiosis Institute of Technology, Pune, India. His research interests include optimization algorithms, multiobjective optimization, multiagent systems, complex systems, swarm optimization, game theory, and self-organizing systems. He is the founder and Chairman of the OAT Research Lab. Anand has published over 40 research papers in peer-reviewed journals and conferences as well as two books.

Suresh Chandra Satapathy is a Professor at the School of Computer Engineering, KIIT, Odisha, India. Previously, he was a Professor and the Head of the Department of CSE at ANITS, AP, India. He received his Ph.D. in CSE from JNTU, Hyderabad, and M.Tech. in CSE from the NIT, Odisha. He has more than 27 years of teaching and research experience. His research interests include machine learning, data mining, swarm intelligence and applications. He has published more than 98 papers in respected journals and conferences and has edited numerous volumes for Springer AISC and LNCS. In addition to serving on the editorial board of several journals, he is a senior member of the IEEE and a life member of the Computer Society of India, where he is the National Chairman of Division-V (Education and Research).


This book discusses one of the major applications of artificial intelligence: the use of machine learning to extract useful information from multimodal data. It discusses the optimization methods that help minimize the error in developing patterns and classifications, which further helps improve prediction and decision-making. The book also presents formulations of real-world machine learning problems, and discusses AI solution methodologies as standalone or hybrid approaches. Lastly, it proposes novel metaheuristic methods to solve complex machine learning problems. Featuring valuable insights, the book helps readers explore new avenues leading toward multidisciplinary research discussions.
Erscheint lt. Verlag 29.11.2019
Reihe/Serie Algorithms for Intelligent Systems
Algorithms for Intelligent Systems
Zusatzinfo IX, 197 p. 57 illus., 25 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Technik
Schlagworte Algorithm analysis and problem complexity • classification • Heuristics • machine learning • Metaheuristics • Optimization
ISBN-10 981-15-0994-8 / 9811509948
ISBN-13 978-981-15-0994-0 / 9789811509940
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Build memory-efficient cross-platform applications using .NET Core

von Trevoir Williams

eBook Download (2024)
Packt Publishing (Verlag)
29,99
Learn asynchronous programming by building working examples of …

von Carl Fredrik Samson

eBook Download (2024)
Packt Publishing Limited (Verlag)
29,99