Design and Development of Heavy Duty Diesel Engines -

Design and Development of Heavy Duty Diesel Engines (eBook)

A Handbook
eBook Download: PDF
2019 | 1. Auflage
XVI, 912 Seiten
Springer Singapore (Verlag)
978-981-15-0970-4 (ISBN)
Systemvoraussetzungen
223,63 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book is intended to serve as a comprehensive reference on the design and development of diesel engines. It talks about combustion and gas exchange processes with important references to emissions and fuel consumption and descriptions of the design of various parts of an engine, its coolants and lubricants, and emission control and optimization techniques. Some of the topics covered are turbocharging and supercharging, noise and vibrational control, emission and combustion control, and the future of heavy duty diesel engines. This volume will be of interest to researchers and professionals working in this area.



P.A. Lakshminarayanan was Chief Technology Officer at Simpson and Co Ltd, Chennai, India till 1-Jan-2019, and before 2011 was the head of the Engine R&D at Ashok Leyland, India. After completing his B. Tech, MS and PhD from Indian Institute of Technology, Madras, he worked as a research associate in University of Technology, Loughborough, UK for four years. He has more than 35 years industry experience, having worked in various capacities in Kirloskar Oil Engines Limited, Ashok Leyland and Simpson and Co Ltd. Dr Lakshminarayanan  is a fellow of SAE, ISEES, and Indian National Academy of Engineering and a member of Combustion Institute. He has co-authored two books and more than 50 research papers and holds seven patents. 

Avinash Kumar Agarwal is a Professor in the Department of Mechanical Engineering in Indian Institute of Technology Kanpur. His areas of interest are IC engines, combustion, alternative fuels, conventional fuels, optical diagnostics, laser ignition, HCCI, emission and particulate control, and large bore engines. He has published 24 books and 230+ international journal and conference papers. Prof. Agarwal is a Fellow of SAE (2012), ASME (2013), ISEES (2015) and INAE (2015). He received several awards such as Prestigious Shanti Swarup Bhatnagar Award-2016 in Engineering Sciences, Rajib Goyal prize-2015, NASI-Reliance Industries Platinum Jubilee Award-2012; INAE Silver Jubilee Young Engineer Award-2012; SAE International's Ralph R. Teetor Educational Award-2008; INSA Young Scientist Award-2007; UICT Young Scientist Award-2007; INAE Young Engineer Award-2005.




This book is intended to serve as a comprehensive reference on the design and development of diesel engines. It talks about combustion and gas exchange processes with important references to emissions and fuel consumption and descriptions of the design of various parts of an engine, its coolants and lubricants, and emission control and optimization techniques. Some of the topics covered are turbocharging and supercharging, noise and vibrational control, emission and combustion control, and the future of heavy duty diesel engines. This volume will be of interest to researchers and professionals working in this area.

Foreword 6
Preface 8
Introduction 12
Part 1: Thermodynamics, Combustion, Gas Exchange, Emissions 12
Part 2: Design of Engine Build 13
Part 3: Noise and Vibration 13
Part 4: Future 13
Contents 14
About the Editors 16
1 Introduction 18
Abstract 18
1.1 Improved Diesel, to Ban Or Not to Ban 18
1.2 Application of Diesel Engines 19
1.3 Duty of Diesel and Its Sizing 20
1.4 Notes on Weight, Fuel Consumption and Optimum Power for a Given GVW 20
1.4.1 Fuel Consumption 20
1.5 Typical Design Parameters 23
1.6 Secrets of Fuel Economy 29
References 30
Thermodynamics, Combustion, Gas Exchange, Emissions 31
2 Modern Diesel Combustion 32
Abstract 32
2.1 Historical Development of Diesel Combustion 33
2.1.1 Piston Lower Side Used for Compression of Charge Air 33
2.2 Engine Combustion Mechanisms 34
2.3 Fuel Injection 36
2.3.1 Unit Injector 37
2.3.2 Common Rail Injection System 38
2.3.3 Digital Valve Technology 41
2.3.4 Injector Nozzle 41
2.4 Supercharging 43
2.5 Exhaust Gas Recirculation 44
2.6 Alternative Diesel Combustion Systems 46
2.7 Emissions of Internal Combustion Engines 48
2.8 Global Climate Change 50
2.9 Emission Legislation 51
2.10 Measurement of Particle Number 53
2.11 Noise Emissions 53
2.12 Exhaust Aftertreatment 58
2.12.1 Particulate Matter Reduction 58
2.12.2 Nitrogen Oxides Reduction 63
2.13 Heat Recuperation 72
2.14 Flexible Engine Systems 74
2.15 Losses 75
2.16 Fuels 75
2.17 Gas Engines 78
2.18 Future Developments 78
References 79
3 Supercharging 81
Abstract 81
3.1 Historical Development of Supercharging 82
3.2 Purpose of Supercharging 83
3.3 Supercharging Methods 83
3.4 Turbocharging 84
3.4.1 Wastegate 87
3.4.2 Variable Turbine Entry Turbocharger 87
3.4.3 Two Stage Turbocharging 90
3.4.4 New Compressor Wheel Design 93
3.5 Boosters and Electric Turbochargers 94
3.6 Charge Air Cooling 95
3.7 Future Developments 95
References 96
4 Introduction to Turbocharging—A Perspective on Air Management System 98
Abstract 98
4.1 Introduction 98
4.2 Need for Air Management 99
4.3 Turbocharger Basics 100
4.4 Overview of Turbocharger Matching 106
4.5 Matching Process in Detail 108
4.5.1 Compressor Features 115
4.5.2 Turbine Features 116
4.5.3 Review of Matching 117
4.5.4 Operating Limits 118
4.5.5 Review of the Matching Process 119
4.6 Turbocharger Aerodynamics 119
4.6.1 Basic Principles 119
4.6.2 Compressible Flow Basics 120
4.6.3 The Concept of Stagnation Properties 122
4.6.4 Coordinate Frame and Frame of Reference 124
4.6.5 Euler Equation 127
4.6.6 Compressor Aerodynamics 128
4.6.7 Compressor Design 130
4.6.8 Turbine Aerodynamics 140
4.6.9 Turbine Design 143
4.6.10 Introduction to Noise Vibration and Harshness 148
4.6.11 Turbocharger Rotordynamics 148
4.6.12 Introduction to Radial Bearing 149
4.6.13 Linear Rotordynamics 150
4.6.14 Rotor System Eigen Frequencies 150
4.6.15 Unbalance Location Versus Rotor Axis 152
4.6.16 Unbalance Location Versus Deflection Locus 152
4.6.17 Gyroscopic Effect 154
4.6.18 Forward and Backward Whirl 154
4.6.19 Fluid Bearings 156
4.6.20 Non-linear Rotordynamics 157
4.6.21 Oil Whirl Behaviour 158
4.6.22 Most Influential Parameters 160
4.6.23 Thermal Transport and Frictional Losses 160
4.6.24 Balancing 161
4.6.25 Methods of Balancing the Rotor 162
4.6.26 High-Speed Core Balancing 163
4.7 Introduction to Thrust (Axial) Bearing 166
4.8 Turbocharger NVH 169
4.8.1 Introduction to Noise 169
4.8.2 Types of Turbocharger Noises 170
4.8.3 Structure Borne Noises 171
4.8.4 Air Borne Noise 175
4.9 Testing Methodologies 187
4.9.1 Analysing Methodology 188
4.10 Vehicle NVH: A Turbocharger Perspective 189
4.11 System Level Counter Measures for Turbocharger Noise 190
4.12 Innovations in Turbochargers 196
4.12.1 Compressor with Splitter Blades 196
4.12.1.1 3D Blade Design 196
4.12.2 Boreless Compressor Wheel 197
4.12.3 Twin Scroll Turbochargers 198
4.12.4 Double Scroll Turbocharger with VGT 198
4.12.5 Variable Outlet Turbine 198
4.12.6 Water-Cooled Compressor Housing 201
4.12.7 Recirculation Groove 201
4.12.8 Electric Booster 203
4.12.9 Kinetic Energy Recovery System 203
4.12.10 Regulated Two-Stage Turbocharger 203
4.12.11 Bearing Systems 205
References 205
5 Topics on Selective Catalyst Reduction 207
Abstract 207
5.1 Introduction 208
5.2 Terminology 209
5.3 Chemical Formulae 209
5.4 Emission Trends 210
5.4.1 Emission Norm and Engine Technology 210
5.4.2 Engine Optimization for SCR Technology 210
5.4.3 SCR System History 212
5.5 Principle of NOx Reduction Mechanism 213
5.6 Models in SCR Calibration 213
5.6.1 NOx Model/Map 213
5.6.2 Exhaust Mass Flow Rate 214
5.6.3 Efficiency Model 215
5.6.4 Storage Model 215
5.6.5 Dosing Ratio 215
5.6.6 Temperature Model 216
5.6.7 OBD 216
5.7 SCR System Logic and Structure 216
5.7.1 SCR Operation and Concepts 216
5.7.2 Types of SCR System 217
5.8 Reductant (Urea Solution) Specification 217
5.9 Salient Properties of Urea Solution 219
5.9.1 Temperature and Ageing 219
5.9.2 Freezing and Material Stress 219
5.9.3 Creeping Behaviour 219
5.9.4 Harsh Environment 219
5.10 Exhaust Layout and General Parts of SCR System 219
5.10.1 Hydrolysis Pipe 220
5.10.2 Urea Hydrolysis and Mixing 220
5.10.3 Ammonia Slip Catalyst (ASC) 223
5.10.4 Urea Injection 224
5.10.5 SCR Catalysts 226
5.10.6 SCR Catalyst Housing Design 227
5.11 Catalyst Substrates 229
5.11.1 Metallic Versus Ceramic 229
5.11.2 Coated Versus Extruded Catalyst 231
5.11.3 Canning Process of a Catalyst 234
5.12 SCR Calibration Steps 236
5.12.1 Dosing Position Finalization 236
5.12.2 Urea Screening 237
5.12.3 Storage Model Calibration 237
5.13 Engine Calibration for Euro-4 and Euro-5 237
5.13.1 ESC and ETC Challenges 238
5.13.2 ESC/ETC NOx Level with Random NOx 239
5.13.3 Repeatability and Consistency in Emission 239
5.13.4 Optimization for Various Exhaust Layouts 239
5.13.5 OBD of SCR System 240
5.14 Value Engineering SCR System 240
5.14.1 Advantages of SCR Over EGR Concept 241
5.15 Failures SCR System in Vehicle 241
5.16 SCR Test Results 244
5.16.1 Emission Cycle 244
5.16.2 Vehicle Validation for SCR System 244
5.17 Vehicle Noise Tests and Approvals 245
References 248
6 Strategies to Control Emissions from Off-Road Diesel Engines 249
Abstract 249
6.1 Introduction 250
6.2 EPA Emission Standards 251
6.3 European Union Emission Standards 252
6.4 Bharat Stage Emission Standards 253
6.5 World Harmonised Cycle 254
6.6 Emissions Formation in Diesel Engines 254
6.7 Impact of Engine Design and Operating Parameters on Emissions 260
6.7.1 Air-Fuel Ratio 261
6.7.2 Swirl Ratio 262
6.7.3 Turbocharging—Inter Cooling 263
6.7.4 Intake Air Temperature 264
6.7.5 Humidity 264
6.7.6 Diesel Fuel Properties 264
6.7.6.1 Cetane Number 264
6.7.6.2 Density and Aromatics 265
6.7.6.3 Volatility 265
6.7.6.4 Diesel Sulphur 266
6.7.7 Deposit Control Additives/Cleanliness Agents 266
6.7.8 Piston Design 266
6.7.9 Crankcase Ventilation 267
6.7.10 Fuel Injection Strategies 267
6.7.11 Exhaust Back Pressure 270
6.7.12 Compression Ratio 270
6.7.13 Coolant Temperature 271
6.8 NOx Control Strategies 271
6.9 SCR 271
6.10 LNT 273
6.11 Water Injection 273
6.12 Water Emulsified Fuel 273
6.13 Exhaust Gas Recirculation 274
6.13.1 External EGR 275
6.13.2 Internal EGR 277
6.14 Valve Train Dynamics 283
6.15 Summary 284
References 285
7 External Exhaust Gas Recirculation 287
Abstract 287
7.1 Introduction 288
7.2 Mechanism of NOx Formation 289
7.2.1 EGR Technique for NOx Reduction 291
7.3 Types of EGR Layout 294
7.4 EGR Rate Control Systems and Strategies 317
7.5 EGR Engine Failures 321
References 323
8 Diesel Particulate Filter 324
Abstract 324
8.1 Introduction 325
8.2 Functions and Requirements 328
8.3 Construction and Working 328
8.4 Design Considerations 329
8.5 Failure Modes of DPF 332
8.6 Materials for DPF 334
8.7 Manufacturing of DPF 335
8.7.1 Production of Raw 335
8.7.2 Kneading 336
8.7.3 Extrusion and Shape Forming 336
8.7.4 Sintering 336
8.7.5 Assembling 336
8.8 Performance of DPF 337
8.9 Regeneration of DPF 340
8.9.1 Throttling 341
8.9.2 Burner Regeneration 341
8.9.3 Electric Regeneration 341
8.9.4 Catalytic Regeneration 341
8.9.5 Post Injection 341
8.10 Catalysed DPF 342
8.11 Continuously Regenerating Trap (CRT) 343
8.12 Application of DPF 344
8.12.1 Light and Medium Duty 344
8.12.2 Heavy Duty 344
8.12.3 Off Road 344
8.12.4 Marine 344
8.12.5 Stationary Equipment 345
8.13 Validation, Testing and Certification 345
8.14 Servicing of DPF 346
8.14.1 Pneumatic DPF Cleaning 347
8.14.2 Wet DPF Cleaning 347
8.14.3 Bake or Thermal Cleaning 347
8.15 Advances in DPF 348
References 349
9 Conversion of Diesel Engines for CNG Fuel Operation 351
Abstract 351
9.1 Necessity of Engines Conversion 352
9.2 Conversion of Gasoline Engine for CNG Operation 352
9.3 Conversion of Diesel Engine for CNG Fuel Operation 353
9.4 Combustion Strategy 354
9.4.1 Stoichiometric 355
9.5 Gas Induction System 356
9.5.1 Carburetion 356
9.5.2 Gas Injection 357
9.5.3 Gas Injected Engines with Close Loop Control and On-Board Diagnosis 358
9.6 Ignition System 359
9.6.1 Distributor Type Ignition System 359
9.6.1.1 Ignition in the CNG SI Engine 359
9.6.2 Ignition Trigger 359
9.6.3 Timing Adjustment 360
9.6.4 Distribution of High Voltage 361
9.6.4.1 Contact Breaker Type Ignition System 361
9.6.4.2 Operation of the Contact Breaker Ignition System 361
9.6.4.3 Spark Advance Mechanism 363
9.6.4.4 Vacuum Advance Mechanism 365
9.6.4.5 Breaker Triggered Semi Electronic Ignition System 366
9.6.5 Distributor-Less Ignition 367
9.6.6 Spark Plug Trials on the Engine 367
9.6.6.1 Spark Plug Selection 367
9.6.6.2 Operating Temperature of Spark Plug 368
9.6.6.3 Selection of Correct Heat Range of Spark Plug 368
9.6.6.4 Heat Range Selection for Natural Gas Engines 369
9.6.6.5 Ionic Current Measurement Method for Spark Plug Selection 369
9.6.6.6 Designation of Spark Plug Types 370
9.6.6.7 Sparkplug Threading Specification in the Cylinder Head 371
9.6.6.8 Fitting of a Spark Plug 371
9.6.6.9 Long Life Spark Plugs 372
9.6.6.10 Mistakes and Consequences 372
9.7 Engine Modifications 373
9.7.1 Piston 373
9.7.2 Cylinder Head 373
9.7.3 Intake Manifold 374
9.7.4 Exhaust Valve and Valve Seat 375
9.7.5 Exhaust Manifold 375
9.7.6 Introduction of Gas System in the Engine 376
9.7.7 Introduction to Ignition System in the Engine 376
9.7.8 Cooling System 377
9.7.9 Catalytic Converter 379
9.7.10 Turbocharger 380
9.8 CNG System Vehicle Adaptation 381
9.8.1 Storage Cylinders 381
9.8.2 High Pressure Tubes 381
9.8.3 Cylinder Valves 381
9.8.4 Pressure Regulator 382
9.8.5 Gas Filter 382
9.8.6 Layout 382
9.9 Improving Thermal Efficiency 383
9.9.1 Helical Intake Port 383
9.9.2 Higher Throttle Opening 383
9.9.3 Limited EGR 383
9.10 Simulation and Development of a MPFI CNG Engine 384
9.10.1 Model Description 384
9.10.1.1 Selection of Vibe Parameters 390
9.10.2 Selection of Turbocharger 390
9.10.3 Optimization of EGR Pipe Diameter 393
9.10.4 Selection of Throttle Body Diameter 395
9.10.5 Engine Development 396
Acknowledgements 401
Appendix 401
References 402
10 Simulation of Gas Flow Through Engine 403
Abstract 403
10.1 1D Thermodynamic Model 403
10.2 Gas Exchange Process 405
10.3 Conclusion 412
References 413
Design of Engine Build 414
11 Development of Ports of Four Stroke Diesel Engines 415
Abstract 415
11.1 Introduction 415
11.2 Characterization of Flow Properties of Valve Ports 417
11.2.1 Resistance to Flow 417
11.2.2 Mean Flow Coefficient 418
11.2.3 Rotation of the Air in the Cylinder 420
11.2.4 Swirl Inducing Intake Ports 420
11.3 Design of Helical Ports 423
11.3.1 Development of Rotation Inside the Cylinder 424
11.4 Design of Exhaust Port (Scheiterlein 2013) 429
11.5 Port Flow Rig 430
References 433
12 Design and Analysis Aspects of Medium and Heavy-Duty Engine Crankcase 434
Abstract 434
12.1 Introduction 435
12.2 Block and Liner Materials 437
12.2.1 Gray Cast Iron 437
12.2.2 Compacted Graphite or Vermicular Cast Iron 439
12.2.3 Ductile Cast Iron 440
12.3 Cylinder Liners 441
12.3.1 Wet Liner Design 441
12.3.2 Dry Cylinder Liner 443
12.3.3 Integral Liner/Parent Bore 443
12.3.4 Liner Bore Distortion and Honing Process 444
12.3.5 Liner Cavitation 447
12.4 Engine Cooling and Coolant Jacket 450
12.5 Block Fire Deck 452
12.6 Design and Analysis Aspects of Crankcase Bottom Bay and Main Bearing Caps 453
12.6.1 Design Aspects of Main Bearing (MB) Cap 455
12.6.2 Design Aspects of Bulkhead and Skirt 458
12.6.3 Analysis Aspects of Engine Bottom Bay 461
12.6.3.1 Structural Durability 461
12.6.3.2 NVH Analysis 462
12.7 Design Aspects of Block Front and Rear End 469
12.7.1 Design Aspects of Block Rear End 469
12.7.2 Design Aspects of Block Front End 471
References 471
13 Connecting Rod 473
Abstract 473
13.1 Introduction 473
13.2 Loads on a Connecting Rod 475
13.3 Load Analysis of Connecting Rod by Classical Method 478
13.4 Load Analysis of Connecting Rod by Finite Element Method 479
13.5 Materials and Heat Treatment 482
13.6 Some Practical Aspects During Design 482
13.6.1 Weight Grouping of Connecting Rods 483
13.6.2 Push-Out Force Test 483
13.6.3 Testing of the Connecting Rod 484
13.7 Improvement in Fatigue Strength 485
13.8 Connecting Rods Produced by Fracture Splitting 485
13.8.1 Process Sequence for Connecting Rod by Fracture Split 486
13.8.2 Costing Comparison 486
13.9 Failure Modes 488
Acknowledgements 489
Appendix 1 489
Appendix 2 492
Appendix 3 493
Appendix 4 501
References 514
14 Critical Fasteners, Highly Loaded Bolted Joints 515
Abstract 515
14.1 Introduction 515
14.2 Basic Working Principle and Joint Diagram 516
14.3 Settling Force Fz 520
14.4 Pre-loading on the Bolts and Tightening Methods 520
14.5 Torque Controlled Tightening 521
14.6 Angle Controlled Tightening and Other Methods 522
14.7 Some Practical Aspects 522
14.7.1 Thread Engagement Length 523
14.7.2 Limiting Surface Pressure 523
14.7.3 Fatigue Loading 524
14.8 High Temperature Fasteners 525
14.9 Improvement in the Fatigue Strength of the Joints 525
14.10 Design Process as Per VDI 2230 (VDI 2230) 526
14.11 Failure Modes of Threaded Fasteners 526
Appendix: Some Critical Fasteners in Engines 528
References 529
15 Crankshaft 530
Abstract 530
15.1 Introduction 531
15.2 Types of Crankshaft 531
15.3 Crank Shaft Strength Calculations 533
15.4 Tribology Aspect for Pin and Main Bearings 536
15.5 Dynamic Balancing of Crankshaft 538
15.6 Balancing of Single Cylinder Engines 539
15.7 Two Cylinder Inline Engines 541
15.8 Three Cylinder Inline Engines 542
15.9 Four Cylinder Inline Engine 543
15.10 Six Cylinder Inline Engine 544
15.11 Balancing a Vee Engine 544
15.12 Six Cylinder 60° Vee Engine 547
15.13 Eight Cylinder 90° Vee Engine 548
15.14 Unbalance: Effect and Allowable Limit 548
15.15 Torsional Vibrations 550
15.16 Torsional Dampers 554
15.17 Testing of Crankshaft 563
15.18 Failure Modes 564
15.19 Materials and Heat Treatment 565
15.20 Manufacturing 565
15.21 Fasteners for Crank Shaft 568
Acknowledgements 570
Annexure I 570
References 578
16 Gaskets 579
Abstract 579
16.1 Introduction 579
16.2 Classification of Gaskets 580
16.3 Cylinder Head Gasket 580
16.3.1 Design Philosophy 580
16.3.2 Combustion Gas Seal 581
16.3.3 Load Deflection Characteristics 584
16.3.4 Gasket Assembled Load Balance 584
16.3.5 Gasket Cover Factor 586
16.3.6 Cylinder Head Lift 587
16.3.7 FEA Calculation 588
16.3.8 Oil and Coolant-Hole Seal 588
16.3.9 Micro Seal Coating 592
16.3.10 Other Surface Treatment 593
16.3.11 Mechanism of Sealing 593
16.3.12 Possible Failures of Cylinder Head Gasket 594
16.4 Secondary Gasket/Exhaust Line Gasket 596
16.4.1 Turbo Charger Gasket 599
16.4.2 EGR Cooler Gasket 600
16.5 Secondary Gaskets 601
16.6 Other Type of Gaskets 602
References 603
17 Design of Valve Train for Heavy Duty Application 604
Abstract 604
17.1 Valve Train 604
17.2 Valve Train Design 606
17.3 Calculation of Cam Profile 607
17.3.1 Harmonic Cam 607
17.4 Parameters for Evaluation of the Cam Design 613
17.4.1 Required Length of the Positive Acceleration Pulse 613
17.5 Hydrodynamic Evaluation Coefficient for Lubricating Conditions Between Cam and Tappet 614
17.6 Valve Spring Calculations 618
17.6.1 Valve Spring Design 618
17.7 1D-simulation—Valve Train Dynamics 622
17.7.1 Stiffness Calculations 625
17.7.2 Results 626
References 639
18 Engine Retarders 640
Abstract 640
18.1 Introduction 640
18.2 Brake Saver 644
18.3 Engine Over Speeding 646
18.4 Types of Engine Retarders 651
18.5 Engine Braking 651
18.6 Engine Compression Brakes 653
18.6.1 External Engine Compression Brakes 654
18.6.2 Exhaust Brake 654
18.6.2.1 Williams Brakes 659
18.6.2.2 Exhaust Pressure Governor 661
18.6.3 Evaluation of Exhaust Brake Performance to Prevent Engine Over Speeding 661
18.6.4 Internal Engine Compression Brakes 669
18.6.4.1 Constant Throttle Valves 677
18.6.4.2 Caterpillar Compression Brakes 678
18.6.4.3 Progressive Step Braking 679
18.7 Summary 679
19 Engine Gear Train Design 682
Abstract 682
19.1 Introduction 683
19.2 Gear Train Layout 685
19.2.1 Spur and Helical Gear 685
19.2.1.1 Spur Gear 685
19.2.1.2 Helical Gear 685
19.2.2 Simple Gear Train 687
19.2.3 Compound Gear Train 689
19.2.4 Typical Layout of Gear Train 691
19.2.5 Gear Support and Bush Selection 693
19.3 Bush Selection for Intermediate Gear 695
19.3.1 Front and Rear Gear Train 696
19.3.1.1 Vibration Due to Flywheel Inertia 696
19.3.1.2 Overall Engine Packaging Size 696
19.4 Design of Engine Gear Train 697
19.4.1 Load Estimation of Engine Gear Train 697
19.4.1.1 Power Estimation of Fuel Injection Pump 698
19.4.1.2 Power Estimation of Engine Camshaft 700
19.4.1.3 Power Estimation of Oil Pump 701
19.4.1.4 Power Estimation of Water Pump 701
19.4.1.5 Power Estimation for Air Compressor 701
19.4.1.6 Power Estimation of Hydraulic Pump 702
19.4.2 Selection of Gear Macro Geometry 702
19.4.2.1 Significance of Gear Pressure Angle 702
19.4.3 Significance of Gear Module 704
19.4.4 Gear Calculations 705
19.4.4.1 Parametric Calculation 706
19.4.4.2 Force on Gear 709
19.4.4.3 Basic Rack and Tooth Rack Profile 710
19.4.4.4 Calculation for Surface Durability (Pitting) 711
19.4.5 Centre Distance and Backlash Selection 714
19.4.6 Effects of Backlash on Gear Rattle 718
19.5 Gear Tooth Modification and Influence of Gear Micro-Geometry 718
19.5.1 Gear Tooth Profile Modification 719
19.5.1.1 Tip Relief and Root Relief 719
19.5.1.2 Profile Crowning 719
19.5.2 Gear Flank Modification 720
19.5.2.1 End Relief 720
19.5.2.2 Lead Crowning 720
19.6 Material Selection and Heat Treatment 721
19.6.1 Material Selection 721
19.6.1.1 Cast Iron 722
19.6.1.2 Steels 723
19.6.1.3 Low Carbon Alloy Steels 723
19.6.1.4 Medium Carbon Steel 724
19.6.1.5 Medium Carbon Alloy Steels 725
19.6.2 Heat Treatment of Gears 725
19.6.2.1 Normalizing 725
19.6.2.2 Direct or Through Hardened Steels 726
19.6.2.3 Case Hardening 727
19.6.2.4 Nitriding 727
19.6.2.5 Advantages of Nitriding Process 729
19.6.2.6 Disadvantages of Nitriding Process 729
19.7 Gear Train Noise: Rattle 731
References 732
20 Piston and Rings for Diesel Engines 733
Abstract 733
20.1 Introduction 734
20.2 Diesel Piston 734
20.3 Aluminium as Piston Material 735
20.3.1 Alloying Elements 735
20.4 Processes 737
20.5 Steel as Piston Material 743
20.6 Basics of Piston Design 746
20.6.1 Calculation of Piston Shape 750
20.7 Piston Rings 758
20.7.1 Piston Ring Material 758
20.7.2 Design of Piston Rings 760
20.8 Summary 763
References 763
21 Cooling, Coolants, and Water Pump and Oil Pump 764
Abstract 764
21.1 Cooling a Diesel Engine 765
21.2 Coolant 766
21.2.1 Glycol-Free Water-Based Coolant 769
21.3 Layout of a Water Pump 769
21.4 Characteristics of a Water Pump 769
21.5 Design of a Water Pump 771
21.5.1 Input to the Design of Water Pump 771
21.5.2 Design of the Impeller 771
21.5.3 Volute Design 775
21.5.3.1 Weep hole 776
21.5.4 Water Pump Seal 778
21.6 Seal Test 781
21.6.1 Water Pump Pulley 782
21.6.2 Gasket and O-Ring 782
21.7 Water Pump Performance Validation 783
21.8 Precautions While Assembling the Pump 784
21.9 Oil Pump 784
21.9.1 Characteristics of an Oil Pump 785
21.10 Pressure at Different Speeds 787
21.11 Relief Valve 787
21.11.1 Inputs for Oil Pump Design 788
21.11.2 Gear Pump Design 788
21.12 Gerotor Pump Design 789
21.13 Gerotor Design 789
21.13.1 Using Design Assist 790
21.13.2 Input Values Manually 790
21.14 Diagnosis of Field Problems 792
21.14.1 Water Pump 793
21.14.2 Oil Pump 793
References 794
22 Design of Electronic Control for Diesel Engines 795
Abstract 795
22.1 Introduction 796
22.2 Outline of Common Rail Fuel Injection System 796
22.3 Electronic Control of Diesel System 798
22.3.1 Features of the Electronic Control Unit (ECU) 799
22.3.2 CAN on Communication 803
22.4 Engine Management System for Diesel 806
22.5 Engine Management System for Compressed Natural Gas Engines 808
22.6 Details of Sensors and Actuators 809
22.7 After Treatment Control Unit 816
22.8 On Board Diagnostic (OBD) with IUPR (AIS 137, part 4) 818
22.9 Actuators 820
22.9.1 OBD Disablement Condition (AIS 137, part 4, ch. 8) 824
22.10 ECU Development Process, V-Cycle 826
22.10.1 Advantages of Rapid Prototyping 828
22.11 Production Code Generation 828
22.12 Closed Loop PID Control Mechanism 829
References 830
Noise and Vibration 831
23 Study of Noise and Vibration Problems Related to Heavy Duty Diesel Engines 832
Abstract 832
23.1 Noise at Steady State 832
23.1.1 Sound Intensity and Energy 833
23.1.2 Ranking Engine Surfaces for Noise Emission 834
23.1.2.1 Test Set up 834
23.1.2.2 Results of Baseline Measurement 834
23.1.2.3 Vehicle 835
23.1.2.4 Techniques to Reduce Noise Radiation from Different Parts of the Engine 836
23.2 Transient Noise from the Silencer 841
23.2.1 Simulation of Transient Operation 841
23.2.1.1 Silencer Model 841
23.2.2 Engine Model 843
23.2.3 Combustion Model 844
23.2.3.1 Driving Cycle 850
23.2.3.2 Load on the Vehicle 851
23.2.4 Measurement for Passby Noise 853
23.2.4.1 Standard Procedure: Heavy Duty Vehicles with Engine Power Less Than 225 KW 853
23.2.4.2 Experimental Switching Technique for Indoor Measurement 853
23.2.5 Simulation of Passby Noise 855
23.2.5.1 Switching Technique 855
23.2.5.2 Calculation Procedure to Satisfy the Indian Standard 3028 855
23.2.6 Results and Discussions 856
23.2.6.1 Validation of the Silencer Model 856
23.2.6.2 Validation of the Transient Thermodynamic Model 857
23.2.6.3 Insertion Loss of the Silencer in an Actual Vehicle 857
23.2.7 Simulation of Passby Noise 860
23.2.7.1 Vehicle Travel 860
23.2.7.2 Transient Performance of the Engine 861
23.2.7.3 Noise at the Standard Microphone 863
23.2.7.4 Parametric Study of the Modification to the Silencer 864
23.2.8 Discussions 866
23.2.9 Summary 866
23.3 Vibration Transmitted to the Supporting Frame due to Inertia and Gas Forces 867
23.3.1 Inertia Couples and Forces 867
23.3.2 Couple due to Gas Pressure 869
23.3.3 Theoretical Understanding of Vibrations 869
23.3.4 Examples 873
23.3.5 Example 1: 3-Cylinder Engine Vibrations 873
23.3.5.1 System Identification and Validation of Predictive Model 874
23.3.5.2 Proposed Improved Solution 876
23.3.5.3 Results and Discussion 877
23.3.6 Example 2: Transmission of Vibration Through Mounts of a Four-Cylinder Engine 877
23.3.6.1 Vehicle 882
References 883
Future 884
24 Future Diesel Engines 885
Abstract 885
24.1 Introduction 886
24.2 Transition from Traditional Diesel to New Technology Diesel Engines 888
24.3 Combustion Strategies 892
24.4 Alternative Energy Sources 894
24.5 Fuel Injection 896
24.6 Aftertreatment Devices and Sensing Systems 898
24.6.1 Diesel Oxidation Catalysts 899
24.6.2 Diesel Particulate Filters 899
24.6.3 NOx Reduction Systems 901
24.7 Sensors and Electronic Control Systems 903
24.8 Charge Intake System 904
24.9 Waste Heat Recovery 906
24.10 Summary 909
References 910

Erscheint lt. Verlag 5.11.2019
Reihe/Serie Energy, Environment, and Sustainability
Zusatzinfo XVI, 914 p. 768 illus., 339 illus. in color.
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Fahrzeugbau / Schiffbau
Technik Maschinenbau
Schlagworte Design and Development of Engines • Emissions from Diesel Engines • Engine Noise Control • Materials in Diesel Engines • Supercharging for diesel engines • Turbocharging Diesel Engines
ISBN-10 981-15-0970-0 / 9811509700
ISBN-13 978-981-15-0970-4 / 9789811509704
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 40,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99
200 Aufgaben zum sicheren Umgang mit Quellen ionisierender Strahlung

von Jan-Willem Vahlbruch; Hans-Gerrit Vogt

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
34,99