Quantitative Mapping of Nanothermal Transport via Scanning Thermal Microscopy (eBook)

(Autor)

eBook Download: PDF
2019 | 1st ed. 2019
XIX, 153 Seiten
Springer International Publishing (Verlag)
978-3-030-30813-1 (ISBN)

Lese- und Medienproben

Quantitative Mapping of Nanothermal Transport via Scanning Thermal Microscopy - Jean Spièce
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The thesis tackles one of the most difficult problems of modern nanoscale science and technology - exploring what governs thermal phenomena at the nanoscale, how to measure the temperatures in devices just a few atoms across, and how to manage heat transport on these length scales. Nanoscale heat generated in microprocessor components of only a few tens of nanometres across cannot be effectively fed away, thus stalling the famous Moore's law of increasing computer speed, valid now for more than a decade. In this thesis, Jean Spièce develops a novel comprehensive experimental and analytical framework for high precision measurement of heat flows at the nanoscale using advanced scanning thermal microscopy (SThM) operating in ambient and vacuum environment, and reports the world's first operation of cryogenic SThM. He applies the methodology described in the thesis to novel carbon-nanotube-based effective heat conductors, uncovers new phenomena of thermal transport in two- dimensional (2D) materials such as graphene and boron nitride, thereby discovering an entirely new paradigm of thermoelectric cooling and energy production using geometrical modification of 2D materials.



After graduating from the Université Libre de Bruxelles in both Ethics and Physics, Jean Spièce was one of the research brains in the major European project 'Quantiheat' through which he obtained his PhD at Lancaster University. The aim of this European project was to tackle the challenge of quantitative nanoscale thermal transport measurements. Beyond this topic, Jean Spièce's research interests are primarily materials nanoscale properties with a focus on thermal and thermoelectrical scanning probe microscopy applications. After finishing at Lancaster University, he took a position in the consulting industry where he strives to find impactful solutions for innovative partners.

Supervisor’s Foreword 7
Abstract 9
Acknowledgements 10
Contents 12
Abbreviations 15
Symbols 16
1 Introduction 17
1.1 Existing Techniques and Limitations 18
1.2 Heat Conduction at the Nanoscale 19
1.2.1 Diffusive Transport and Its Nanoscale Limit 20
1.2.2 Transport at Interfaces 23
1.3 Outline and Motivations 24
References 25
2 Background Review 26
2.1 Scanning Thermal Microscopy (SThM) 26
2.1.1 Scanning Probe Microscopy 26
2.1.2 History and Principles of SThM 28
2.1.3 Basic Operation Possibilities 32
2.1.4 Heat Transfer Mechanisms in the Tip-Sample System 34
2.1.5 What Is Measured? 37
2.2 Modelling and Simulations 38
2.2.1 Finite Element Analysis Compared to Analytical Formulations 39
2.2.2 Spreading Resistance of Layered Systems 39
2.3 Summary 43
References 44
3 SThM Experimental Models and Setups for Exploring Nanoscale Heat Transport 47
3.1 Precise Nanothermal Measurements via Spatially Distributed Scanning … 47
3.1.1 Introduction 47
3.1.2 Combined Analytical Model and High-Precision SThM Setup 49
3.1.3 Results and Discussion 55
3.1.4 Summary 59
3.2 Introducing CryoSThM—Nanothermal Transport Measurements at Cryogenic Temperatures 61
3.2.1 Vacuum SThM Setup for Measurements at Cryogenic Temperatures 61
3.2.2 Measurement Model 63
3.2.3 CryoSThM Demonstration 65
3.2.4 Summary 68
3.3 Dynamic SThM: Quasi Non-contact Method for Multiparametrical Investigation 69
3.3.1 Introduction 69
3.3.2 Methodology 70
3.3.3 Results 71
3.3.4 Summary 74
References 74
4 Quantitative Thermal Transport Measurements in Nanostructures 77
4.1 Principles and Applications of Layer Analytical Model 77
4.1.1 Silicon Oxide Steps 80
4.1.2 ALD Aluminium Oxide Layers 81
4.2 Thermal Transport in Metal Covered Block Copolymers 82
4.3 Summary 89
References 90
5 Three Dimensional Mapping of Thermal Properties 91
5.1 Introduction 91
5.2 Combining BEXP and SThM 92
5.3 Quantitative Measurements of Thermal Conductivity and Interface Resistance 94
5.4 Thermal Transport in Anisotropic Media 99
5.5 Characterisation of Thermal Interface Materials 102
5.5.1 Buried Morphology and Structure 103
5.5.2 Nanoscale Thermal Mapping of Full Interface 105
5.5.3 Perspectives on Nanothermal Characterisation of TIM 110
5.6 Summary 111
References 112
6 Nanoscale Thermal Transport in Low Dimensional Materials 114
6.1 Introduction 114
6.2 Heat Transport in Two Dimensional Materials and Their Heterostructures 114
6.2.1 Franckeite 115
6.2.2 Heterostructure of MoS2 on Graphene 119
6.3 Temperature Dependent Thermal Resistance of Length Varying Vertically Aligned Carbon Nanotubes 122
6.3.1 Sample Preparation and Description 123
6.3.2 Thermal Resistance Measurement and Models 123
6.3.3 Low Temperature Thermal Transport 128
6.4 Summary 130
References 131
7 Thermoelectric Phenomena in Graphene Constrictions 132
7.1 Introduction 132
7.2 Microheater Thermometry 133
7.2.1 Temperature Mapping of the Junction Heater 133
7.2.2 Null-Point Measurement of Heater Excess Temperature 134
7.2.3 Low Temperature Thermometry 137
7.3 Exploring Thermoelectric Effects in Graphene Constrictions 138
7.3.1 Thermometry Measurement Principles 139
7.3.2 Scanning Thermal Gate Microscopy (SThGM) 140
7.3.3 Main Results 141
7.4 Summary 144
References 145
8 Conclusion and Perspectives 147
8.1 Major Achievements of This Thesis 147
8.2 Perspectives and Challenges for Nanoscale Thermal Measurements 148
Appendix Appendix 150
A.1 Estimation of the Contact Radius 150
A.2 Conical Tip Temperature Distribution Model 150
A.3 Description of Experimental Setups 152
A.3.1 General SThM Setup Components and Uses 152
A.3.2 SThM Box 153
A.3.3 Laser Management 156
A.4 Python Code for Approach-Retract Curve Analysis 157
Appendix Curriculum Vitae 162

Erscheint lt. Verlag 18.10.2019
Reihe/Serie Springer Theses
Zusatzinfo XIX, 153 p. 95 illus., 76 illus. in color.
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Theoretische Physik
Technik Elektrotechnik / Energietechnik
Schlagworte 2D Materials • Carbon-nanotube-based heat conductors • Cryogenic SThM • Nanoscale heat generation • Scanning Probe Microscopy • Scanning Thermal Microscopy • Thermal Transport at nanoscale
ISBN-10 3-030-30813-8 / 3030308138
ISBN-13 978-3-030-30813-1 / 9783030308131
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 8,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Für Ingenieure

von Rainer Müller; Franziska Greinert

eBook Download (2023)
De Gruyter (Verlag)
49,95
Theoretische Physik I

von Peter Reineker; Michael Schulz; Beatrix M. Schulz …

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
48,99