Physical Science Under Microgravity: Experiments on Board the SJ-10 Recoverable Satellite (eBook)
VIII, 394 Seiten
Springer Singapore (Verlag)
978-981-13-1340-0 (ISBN)
This book presents the physical science experiments in a space microgravity environment conducted on board the SJ-10 recoverable satellite, which was launched on April 6th, 2016 and recovered on April 18th, 2016. The experiments described were selected from -100 proposals from various institutions in China and around the world, and have never previously been conducted in the respective fields. They involve fluid physics and materials science, and primarily investigate the kinetic properties of matter in a space microgravity environment. The book provides a comprehensive review of these experiments, as well as the mission's execution, data collection, and scientific outcomes.
Wenrui HU: Researcher at the Institute of Mechanics, Chinese Academy of Sciences (CAS), a Chinese Academy of Sciences and International Academy of Astronautics academic, and Chief Scientist of SJ-10 satellite engineering. His main interests are fluid physics, space science and microgravity fluid physics.
Qi KANG: Researcher at the Institute of Mechanics, Chinese Academy of Sciences (CAS), doctoral supervisor, Chief Designer of application systems, SJ-10 satellite engineering. His main interests are experimental mechanics, microgravity sciences and fluid physics.
This book presents the physical science experiments in a space microgravity environment conducted on board the SJ-10 recoverable satellite, which was launched on April 6th, 2016 and recovered on April 18th, 2016. The experiments described were selected from ~100 proposals from various institutions in China and around the world, and have never previously been conducted in the respective fields. They involve fluid physics and materials science, and primarily investigate the kinetic properties of matter in a space microgravity environment. The book provides a comprehensive review of these experiments, as well as the mission's execution, data collection, and scientific outcomes.
Preface 6
Contents 8
Introduction to Physical Sciences Experiments Completed in SJ-10 Recoverable Satellite 10
1 Introduction to SJ-10 Mission 10
2 Introduction to SJ-10 Engineering 13
3 Introduction to the Objectives of Microgravity Physical Sciences Projects 16
References 19
System Design and Flight Results of China SJ-10 Recoverable Microgravity Experimental Satellite 21
1 Introduction 22
2 Development of Foreign and Domestic Platform 23
2.1 Brief Introduction 23
2.2 Development of Foreign Platform 24
2.3 Development of Domestic Platform 25
3 Object of System Design 26
4 System Design 26
4.1 Characteristics and Difficulties Analysis 26
4.2 System Composition and Architecture 27
4.3 System Technical Characteristics 28
4.4 Orbit Design 28
4.5 System Configuration and Layout Design 28
4.6 Flight Procedure 29
4.7 Scientific Experiment Flow Design 30
4.8 Design of the Micro-gravity Environment 31
4.9 High Payload-to-Total-Weight Ratio Design 37
4.10 Temperature Control System Design of the Payload of Recovery Capsule 38
4.11 Design of Multi-payload Space Laboratory Management System 39
4.12 Aerospace Products Reuse Technology 41
4.13 Low Cost Design 42
5 Evaluation of Flight Test Results 45
5.1 Evaluation of System Technical Characteristics 45
5.2 Evaluation of Microgravity Environment 45
5.3 Evaluation of In-orbit Scientific Experiments 52
6 Future Development Outlook of China Recoverable Satellite 53
7 Conclusion 54
References 54
Granular Clustering Studied in Microgravity 55
1 Freely-Cooling Evolution of Granular Gas 55
1.1 Haff’s Freely Cooling Model 57
1.2 Experiment 58
1.3 Experimental Results 59
1.4 Simulation Results 62
2 Maxwell’s Demon in Zero Gravity 66
2.1 Model 67
2.2 Experimental 69
2.3 Numerical 69
2.4 Results 71
3 Summary 77
References 77
Thermal Dynamics of Growing Bubble and Heat Transfer in Microgravity Pool Boiling 81
1 Introduction 82
2 Pool Boiling Curve 83
3 Onset of Nucleation Boiling 85
4 Bubble Dynamics During Nucleation Pool Boiling 89
5 Gravity Scaling of Heat Transfer in Nucleation Pool Boiling 96
6 Enhancement of Pool Boiling Heat Transfer in Microgravity 100
7 Conclusion Remarks 103
References 104
Study on Thermocapillary Convection in an Annular Liquid Pool 108
1 Introduction 108
2 Research Status on Thermocapillary Convection 111
3 Ground Experimental Study on Thermocapillary Convection 117
3.1 Experimental Model 117
3.2 Measurement System of Thermocapillary Convection 118
3.3 Experimental Process and Results Analysis 120
4 Experimental Study in Space on Thermocapillary Convection 124
4.1 Scientific Objectives 124
4.2 Development of Payload 125
4.3 Preliminary Results of the Space Experiment 128
5 Summary 131
References 132
Droplet Manipulation and Colloidal Particle Self-assembling in Space 135
1 Introduction 136
2 The First Attempt for the Colloidal Assembly in the Space 136
2.1 The Structure and Functional Units of the Colloidal Material Box (CMB) 138
2.2 Colloidal Evaporation Experimental Module of the CMB 138
3 How to Control the Droplet in the Space 141
3.1 The Confined Substrate for Droplet Pinning 141
3.2 The Profiles of the Confined Colloidal Droplet on the Ground or in the Space 143
3.3 The Evaporation of the Droplet in the Space 145
4 The Self-assembly of the Colloidal Particles 147
4.1 Multi-physical Effects During the Droplet Evaporation 147
4.2 The Effect of the Gravity for the Deposition Pattern 148
4.3 The Mechanism for Encounter and Pursuit 149
5 Conclusion and Outlook 151
References 152
Influence of Gravity on Inorganic Liquid Crystal 156
1 Introduction of Typical Inorganic Liquid Crystals 156
1.1 Rod-like Inorganic Liquid Crystals 157
1.2 Plate-like Inorganic Liquid Crystals 160
1.3 Prospect of Inorganic Liquid Crystals 164
2 The influence of gravity on inorganic lyotropic liquid crystals 165
2.1 Settlement and Fractionation in Inorganic Liquid Crystals Induced by Gravity 166
2.2 Weakened Impact of Polydispersity in Gravitational Field 169
3 Conclusion 172
References 173
SCCO: Thermodiffusion for the Oil and Gas Industry 175
1 Introduction 176
2 Quantifying Thermodiffusion 178
2.1 Experimental Investigations 179
2.2 Modelling Developments 180
2.3 Molecular Simulations 181
3 The SCCO-SJ10 Experiment 182
3.1 Fluid Preparation and HP Cell Filling Process 185
3.2 Conditions During the SJ-10 Orbital Flight 186
3.3 High Pressure Cell Analysis Process 187
3.4 Results and Discussions 188
References 190
Ignition and Combustion Characteristics of Overloaded Wire Insulations Under Weakly Buoyancy or Microgravity Environments 195
1 Introduction 196
2 Research on Fire Initiation in Microgravity by FS Method 199
3 The Low-Pressure Narrow Channel Method 202
3.1 Temperature Variation of Wire Insulation with 2A 207
3.2 Smoke Emission with 6 A in LPNCM Conditions 210
4 Study on Prefire Phenomena at Microgravity by SJ-8 213
4.1 Experimental Facility and Process 213
4.2 Temperature Histories 215
4.3 Effects of Overloaded Currents 218
4.4 The Radiation Characteristics 218
5 Wire Insulations Experiments in Microgravity by SJ-10 220
5.1 Setup of Experiment on SJ-10 220
5.2 Sample Selection 221
5.3 Processing of Images 223
5.4 Smoke Emission 225
5.5 Temperature Variation 231
5.6 Environment Parameters 235
5.7 Conclusions of SJ-10 Experiments 236
References 237
Flame Spread in Low-Speed Forced Flows: Ground- and Space-Based Experiments 240
1 Introduction 240
2 Effects of a Confined Space on Microgravity Flame Spread 242
3 Near-Limit Instabilities of Concurrent Flame Spread Over Thin Solids 246
4 Opposed versus Concurrent Flames Spreading Over a Thick Solid 250
5 Spread and Dynamic Transition Behaviors of Flames Over a Thick Solid in Microgravity 254
6 Summary 261
References 263
Experimental Study on Coal Combustion at Microgravity 266
1 Introduction 267
2 Studying Coal Combustion at Microgravity Using a Drop Tower 270
2.1 The Experiments on Ignition of Single Coal Particles 270
2.2 The Experiments on Ignition of Coal Particle Clouds 284
3 SJ-10-Based Study of Coal Combustion at Microgravity 285
3.1 The Project Description 285
3.2 The Experimental System 286
3.3 Some Experimental Results 293
4 Concluding Remarks 296
References 303
Material Processing Facilities in Space 305
1 High-Temperature Heating Furnaces in Microgravity 305
1.1 Russian POLIZON Facility 306
1.2 Heating Furnace in Microgravity Developed by German 307
1.3 Materials Heating Furnaces on ISS 307
1.4 Materials Heating Furnaces for Microgravity Investigation Developed in China 310
2 In Situ Observation Facilities for Materials Processing in Space 315
2.1 In Situ Observation Facility by Optical Techniques 315
2.2 In Situ Observation Facility by Other Techniques 319
3 Facilities for Special Material Processing in Microgravity 321
3.1 Containerless Processing Facility for Materials 322
3.2 Plasma Research Facility Under Microgravity 323
3.3 In-space Soldering Investigation (ISSI) 324
3.4 Facilities for Thin-film Material Fabrication in Space 324
4 Summary 325
References 325
Melt Growth of Semiconductor Crystals Under Microgravity 328
1 Introduction 329
2 Towards Diffusion-Controlled Growth 330
2.1 Segregation and Solute Transport Under Microgravity 330
2.2 Influence of Marangoni Convection 333
2.3 Damping the Convections Under Microgravity 336
3 Detached Solidification 338
3.1 Observations and Merits of Detached Solidification 338
3.2 The Underlying Mechanism 340
3.3 Guides to Ground-Based Solidifications 344
3.4 Implications of Detached Growth Mechanism for Microgravity Experiments 346
4 New Melt Growth Techniques 347
4.1 Difficulties in Preparing Semiconductor Alloys 347
4.2 TLZ Method and Related Microgravity Experiments 348
4.3 The VGF Method 350
4.4 Microgravity Experiments Based on VGF 352
5 Conclusion 355
References 356
Wetting Behavior and Interfacial Characteristics of High Temperature Melts Under Microgravity 362
1 Background 363
2 Research Items and Experimental Design 364
2.1 Selection of Experimental Materials 365
2.2 Sample Preparation 366
2.3 Sample Processing and Assembling 367
2.4 Space Multi-purpose Materials Synthesis Furnace 371
2.5 Experiment Process Under Microgravity 371
2.6 Testing and Analysis of Recovered Sample 378
3 Experiment Results Analysis 382
3.1 Contrast Analysis of Interface Reaction Between Ground and Microgravity Conditions 382
3.2 The Interface Reaction Dynamics Analysis 390
4 Summary 394
References 395
Erscheint lt. Verlag | 16.10.2019 |
---|---|
Reihe/Serie | Research for Development | Research for Development |
Zusatzinfo | VIII, 394 p. 240 illus., 200 illus. in color. |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Angewandte Physik |
Naturwissenschaften ► Physik / Astronomie ► Astronomie / Astrophysik | |
Naturwissenschaften ► Physik / Astronomie ► Thermodynamik | |
Technik ► Luft- / Raumfahrttechnik | |
Technik ► Maschinenbau | |
Wirtschaft ► Betriebswirtschaft / Management ► Logistik / Produktion | |
Schlagworte | Colloidal Assembling • Evaporation and Fluid Interfacial Effects • Granular Clustering • Space Microgravity Science • Thermocapillary Convection • Thermodiffusion for the Oil and Gas Industry |
ISBN-10 | 981-13-1340-7 / 9811313407 |
ISBN-13 | 978-981-13-1340-0 / 9789811313400 |
Haben Sie eine Frage zum Produkt? |
Größe: 20,4 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich