Solar Energy -

Solar Energy (eBook)

Systems, Challenges, and Opportunities
eBook Download: PDF
2019 | 1st ed. 2020
XV, 423 Seiten
Springer Singapore (Verlag)
978-981-15-0675-8 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book covers challenges and opportunities related to solar-energy based systems. It covers a wide variety of topics related to solar energy, including  applications-based systems such as solar thermal systems that are focused on drying, desalination, space cooling, refrigeration, and processing; recent advances in solar cells (DSSC) and photovoltaics; technologies for storage of energy (both sensible heating as well as latent heating); and the design of concentrated solar receivers. The information is presented in the context of the overall global energy utilization, and the role of solar energy has been highlighted. The contents of this book will be of interest to researchers, professionals, and policymakers alike.

Dr. Himanshu Tyagi is currently working as an Associate Professor in the School of Mechanical, Materials and Energy Engineering at IIT Ropar. He has previously worked at the Steam Turbine Design Division of Siemens (Germany and India) and at the Thermal and Fluids Core Competency Group of Intel Corp (USA). He received his Ph.D. from Arizona State University, in the field of heat transfer and specifically looked for the radiative and ignition properties of nanofluids. He and his co-workers proposed the concept of direct absorption solar collectors using nanofluids which won the Best Paper Award at the ASME Energy Sustainability Conference at Long Beach, CA. He obtained his master's degree from University of Windsor, Canada, and his bachelor's from IIT Delhi, in Mechanical Engineering. At present, he is working to develop nanotechnology-based clean and sustainable energy sources with a team of several Ph.D., postgraduate, and undergraduate students. Among other awards, he has received Summer Undergraduate Research Award (SURA) from IIT Delhi, International Graduate Student Scholarship from University of Windsor Canada, Indo-US Science and Technology Forum (IUSSTF) grant awarded for organizing an Indo-US Workshop on 'Recent Advances in Micro/Nanoscale Heat Transfer and Applications in Clean Energy Technologies' at IIT Ropar.

Dr. Prodyut Ranjan Chakraborty is an Assistant Professor in the Mechanical Engineering, IIT Jodhpur since February 2013. He received his Bachelor degree of Mechanical Engineering from the North Bengal University in 2000, and his M.Sc Engineering in 2004, and PhD in 2011 both from the Department of Mechanical Engineering, Indian Institute of Science Bangalore. Prior to his joining at IIT Jodhpur, he worked for two years at the Department of Material Physics in Space in German Aerospace Center (DLR) Cologne as a postdoctoral research fellow. He also worked as a Research Analyst at the Applied CFD Lab, G.E. Global Research Centre Bangalore from 2004 to 2005. His primary area of research is numerical modeling of alloy solidification, latent heat based energy storage systems for high temperature applications, Thermal management and thermal comfort, and sorption cooling.

Dr. Satvasheel Powar is an Assistant Professor in the School of Engineering, IIT Mandi since June 2015. He received his Bachelors (Production Engineering) from Shivaji University in 2003, and Masters (Mechanical Engineering) from the Dalarna University, Sweden in 2005. He then worked with Greatcell Solar S.A., Switzerland, and G24i, the UK. He received his Ph.D. in Chemistry/Materials Engineering from the Monash University, Australia in 2013. Before joining at IIT Mandi, he worked for two and half years at the Nanyang Technological University, Singapore as a postdoctoral research fellow. His primary area of research is new generation solar photovoltaic and solar thermal utilization. He was recently awarded the Bhaskara Advanced Solar Energy fellowship by Indo-US Science and Technology Forum (IUSSTF) to visit Lawrence Berkeley National Laboratory, University of California, Berkeley, USA for three months. 

Prof. Avinash Kumar Agarwal joined IIT Kanpur in 2001. He worked at the Engine Research Center, University of Wisconsin at Madison, USA as a Post-Doctoral Fellow (1999 - 2001). His interests are IC engines, combustion, alternate and conventional fuels, lubricating oil tribology, optical diagnostics, laser ignition, HCCI, emissions and particulate control, and large bore engines. Prof. Agarwal has published 270+ peer reviewed international journal and conference papers, 35 edited books, and 63 books chapters. He is an associate editor of ASME Journal of Energy Resources Technology, and has edited the Handbook of Combustion, Wiley VCH, Germany. Prof. Agarwal is a Fellow of SAE, ASME, NASI, Royal Society of Chemistry, ISEES, and INAE. He has been the recipient of several prestigious awards such as Clarivate Analystics India Citation Award-2017 in Engineering and Technology, NASI-Reliance Industries Platinum Jubilee Award-2012; INAE Silver Jubilee Young Engineer Award-2012; Dr. C. V. Raman Young Teachers Award: 2011; SAE Ralph R. Teetor Educational Award -2008; INSA Young Scientist Award-2007; UICT Young Scientist Award-2007; INAE Young Engineer Award-2005. Prof. Agarwal received Prestigious Shanti Swarup Bhatnagar Award-2016 in Engineering Sciences.


This book covers challenges and opportunities related to solar-energy based systems. It covers a wide variety of topics related to solar energy, including  applications-based systems such as solar thermal systems that are focused on drying, desalination, space cooling, refrigeration, and processing; recent advances in solar cells (DSSC) and photovoltaics; technologies for storage of energy (both sensible heating as well as latent heating); and the design of concentrated solar receivers. The information is presented in the context of the overall global energy utilization, and the role of solar energy has been highlighted. The contents of this book will be of interest to researchers, professionals, and policymakers alike.

Preface 6
Contents 9
Editors and Contributors 11
General 16
1 Introduction to Solar Energy: Systems, Challenges, and Opportunities 17
2 Sustainable Development Goals in Context to BRICS Countries 27
2.1 Introduction 28
2.1.1 Economic Analysis 28
2.2 BRICS: Role of India 30
2.3 BRICS: Role of China 31
2.4 BRICS: Role of Russia 32
2.5 BRICS: Role of Brazil 33
2.6 BRICS: Role of South Africa 34
2.7 Conclusion 35
References 36
3 Installations of Solar Systems in Remote Areas of Himachal Pradesh, INDIA: Challenges and Opportunities 37
3.1 Introduction 37
3.2 Challenges/Limitations of Concentrating Solar Power Technology in Remote Regions 38
3.3 Opportunities for Renewable Energy Installations 41
3.4 Improvement of the Performance of Solar-Based Power Units/Set Ups 46
3.5 Concluding Remarks 46
References 48
4 Utilising Passive Design Strategies for Analysing Thermal Comfort Levels Inside an Office Room Using PMV-PPD Models 49
4.1 Introduction 50
4.1.1 Energy Conservation in Buildings 50
4.1.2 Meeting the Indoor Environmental Quality (IEQ) 51
4.1.3 Thermal Comfort: A Necessity 52
4.1.4 Thermal Comfort Evaluation 53
4.2 Methodology 55
4.3 Results and Discussion 58
4.3.1 Experimental Results 58
4.3.2 Analysis Led Design Results and Validation 60
4.3.3 Passive Design Strategies for Thermal Comfort Analysis 60
4.3.4 Optimal Solution for Maximum Thermal Comfort 66
4.4 Conclusions 68
References 69
Solar Thermal Systems: Heating 72
5 Design and Development of a Concentrated Solar Water Heating System 73
5.1 Introduction 74
5.2 Design of Concentrated Solar Water Heating System 77
5.2.1 Parabolic Dish Design 79
5.2.2 Receiver Design 82
5.3 Manufacturing of CSWH 83
5.4 Experimental Setup 84
5.5 Results and Discussions 85
5.6 Conclusions 86
References 87
6 Multi-objective Performance Optimization of a Ribbed Solar Air Heater 88
6.1 Introduction 88
6.2 Geometric Modeling 92
6.2.1 Mathematical Modeling 92
6.2.2 Numerical Solution Procedure 93
6.3 Taguchi Approach 94
6.4 Results and Discussion 96
6.5 Confirmation Tests 102
6.6 Conclusions 103
References 104
7 Mathematical Modelling of Solar Updraft Tower 105
7.1 Introduction 106
7.2 Mathematical Modelling of the Power Plant 109
7.2.1 Case 1 (Without Losses) 110
7.2.2 Case 2 (with Losses) 112
7.3 Results and Discussions 113
7.3.1 Impact of Solar Radiations on Performance of the Plant 113
7.3.2 Hour of the Day 114
7.3.3 Collector Radius 116
7.3.4 Chimney Radius 118
7.3.5 Chimney Height 118
7.3.6 Comparison of Power Output Between 21st June and 21st December 121
7.4 Conclusions 122
References 123
Solar Thermal Systems: Cooling 125
8 Solar Thermal-Powered Adsorption Chiller 126
8.1 Introduction 127
8.2 System Description 128
8.3 Model Equations of a Flat Plate Collector 129
8.3.1 Components of an FPC 129
8.3.2 Efficiency of an FPC 131
8.4 Model Equations of an Evacuated Tube Collector 134
8.4.1 Efficiency of an ETC 135
8.4.2 Dynamic Modelling of an ETC 137
8.5 Modelling of an Adsorption Chiller 139
8.5.1 Description of Operating Modes 139
8.5.2 Model Equations for the Adsorbent—Adsorbate Pair 142
8.5.3 Model Equations of the Chiller 143
8.5.4 Typical Simulation Results 151
8.6 Conclusion 154
References 154
9 TEWI Assessment of Conventional and Solar Powered Cooling Systems 156
9.1 Introduction 157
9.2 Cooling Systems 160
9.2.1 Vapor Compression Refrigeration (VCR) 160
9.2.2 Solar Cooling 161
9.3 Total Equivalent Warming Impact (TEWI) 163
9.3.1 TEWI of Conventional Cooling System 164
9.3.2 TEWI of Solar Cooling System 173
9.4 Results Comparison and Discussions 177
9.5 Conclusions 179
Appendix 1 179
The Sensitivity of TEWI with a Refrigerant Leakage Rate 179
Appendix 2 180
Effect of Refrigerant Type on TEWI 180
References 182
10 Thermodynamic Analysis of Activated Carbon–Ethanol and Zeolite–Water Based Adsorption Cooling Systems 187
10.1 Introduction 187
10.2 History of Adsorption Cooling Technology 188
10.3 Current Research on Adsorption Refrigeration 189
10.4 Adsorption Process and Selection Criteria for Working Pairs 191
10.5 Adsorption Refrigeration Cycle 192
10.6 Heat Recovery Cycle 194
10.7 Mathematical Modelling 195
10.8 Results 200
10.9 Conclusion 211
References 211
Energy Storage 213
11 PCM-Metal Foam Composite Systems for Solar Energy Storage 214
11.1 Introduction 214
11.1.1 Types of Energy Storage 215
11.1.2 Thermal Energy Storage Systems 215
11.1.3 Thermal Enhancement of Latent Heat Energy Storage Systems 216
11.2 PCM-Metal Foam Hybrid System 216
11.2.1 Concept 216
11.2.2 Design and Construction 217
11.2.3 Materials 218
11.3 Important Design Parameters for a PCM-Metal Foam System 218
11.3.1 Thermo-physical Properties of Foam Material 218
11.3.2 Thermo-physical Properties of PCM 219
11.3.3 Foam Porosity 219
11.3.4 Foam Structure 219
11.3.5 Overall Size and Aspect Ratio 220
11.4 Previous Studies on PCM-Metal Foam Hybrid Systems 220
11.4.1 Experimental Studies 220
11.4.2 Numerical Modelling 220
11.5 Case-Studies 222
11.5.1 Numerical Model and Problem Description 222
11.5.2 Effect of Foam Material 226
11.5.3 Effect of Phase Change Material 228
11.5.4 Effect of Porosity 229
11.5.5 Effect of Pore Size 233
11.5.6 Effect of Overall System Size 236
11.6 Summary 238
References 239
12 Direct Photo-Thermal Energy Storage Using Nanoparticles Laden Phase Change Materials 242
12.1 Introduction 243
12.2 Experimental Materials and Methods 245
12.2.1 Ultra-sonication Process 245
12.3 Experimental Set-Up 246
12.4 Results and Discussion 247
12.5 Conclusions 252
References 252
13 Review on PCM Application for Cooling Load Reduction in Indian Buildings 254
13.1 Introduction 255
13.2 TES Materials for Application in Buildings 255
13.2.1 Sensible Heat Storage Materials 256
13.2.2 Latent Heat Storage Materials 258
13.2.3 Chemical Heat Storage Materials 258
13.3 PCM Properties and Methods of Characterization 263
13.3.1 Desired PCM Properties and Their Inherent Problems 263
13.3.2 Material Characterization 264
13.4 Methods of PCM Incorporation 264
13.4.1 Direct Incorporation 265
13.4.2 Immersion 265
13.4.3 Vacuum Impregnation 265
13.4.4 Encapsulation 266
13.4.5 Shape and Form Stabilized Composites 266
13.5 Assessment of PCM Incorporation within Buildings 266
13.6 PCM Thermal Conductivity Enhancement with Nanoparticle Dispersion 267
13.7 PCM Selection and Mapping for Building Application in India 268
13.8 Design Conditions 270
13.8.1 Case Study 1: Delhi (Altitude: 416° M, Latitude 28.6° N, Longitude 77.2° E) 270
13.8.2 Case Study 2: Jaipur (Altitude: 431° M, Latitude 28.9° N, Longitude 75.8° E) 271
13.8.3 Case Study 3: Chennai (Altitude: 6° M, Latitude 13.1° N, Longitude 80.3° E) 272
13.9 Thermal Calculations 273
13.10 Results and Discussion 274
13.10.1 Mapping/Selection of PCM 275
13.11 Conclusions 280
References 280
14 Fabrication and Thermal Performance Evaluation of Metastable Supercooled Liquid PCM Based Heat Pack 283
14.1 Introduction 283
14.2 Materials and Methods 285
14.3 Results and Discussion 286
14.3.1 Thermal Performance Evaluation of PCM Heat Pack 286
14.3.2 Thermal Performance Evaluation of Water Heat Pack 287
14.4 Conclusion 288
References 288
Solar Cells 289
15 Yet to Be Challenged: TiO2 as the Photo-Anode Material in Dye-Sensitized Solar Cells 290
15.1 Introduction 291
15.1.1 Characterizing DSSCs 293
15.1.2 Modifications to TiO2 294
15.2 TiO2 Morphology 295
15.3 TiO2 Composites/Hybrid Materials 298
15.3.1 Metals 299
15.3.2 Metal Oxides 301
15.3.3 Metal Nitrides 302
15.3.4 Metal Sulfides 303
15.3.5 Carbon Nanostructures 303
15.4 Modifications Done by Doping 304
15.4.1 Nonmetals 306
15.4.2 Transition Metals 306
15.4.3 Post-transition Metal 308
15.4.4 Lanthanides 308
15.5 Potential Competitors 309
15.6 Conclusion 311
References 312
16 p-Type Dye Sensitized Solar Cells: An Overview of Factors Limiting Efficiency 319
16.1 Introduction 320
16.2 Structure of DSCs 322
16.3 Kinetics of Single Junction DSCs 323
16.4 Current–Voltage Characteristics of a DSC 324
16.5 p-Type DSCs 325
16.6 Tandem DSCs 326
16.7 Factors Affecting Overall Performances of p-Type DSCs 327
16.8 Maximizing Light Harvesting 328
16.9 Minimizing Electron Losses 335
16.10 Solid State Dye Sensitized Solar Cells 340
16.11 Summary and Outlook 341
References 345
17 Conducting Polymers as Cost Effective Counter Electrode Material in Dye-Sensitized Solar Cells 349
17.1 Introduction 350
17.1.1 Operational Principle of Dye-Sensitized Solar Cells 351
17.1.2 CE Materials 354
17.2 Conducting Polymers as CE Material 355
17.2.1 Polyaniline (PANI) as a CE in DSCs 356
17.2.2 Polypyrrole (PPy) as a CE in DSCs 360
17.2.3 Poly(3,4-Ethylenedioxythiophene)/(PEDOT) as a CE in DSCs 364
17.2.4 Polymer Hybrid Composites as CEs in DSCs 367
17.3 Summary 370
References 371
18 Interfacial Materials for Organic Solar Cells 376
18.1 Introduction 376
18.2 Interfacial Design for Efficient Organic Solar Cells 380
18.2.1 Electron Transport Materials as Cathode Interface Layers 380
18.2.2 Hole Transport Materials as Anode Interface Layers 411
18.3 Conclusions and Outlook 416
References 416

Erscheint lt. Verlag 14.10.2019
Reihe/Serie Energy, Environment, and Sustainability
Energy, Environment, and Sustainability
Zusatzinfo XV, 423 p.
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Energy Storage • Photovoltaics • Solar cells • Solar energy • Sustainable energy
ISBN-10 981-15-0675-2 / 9811506752
ISBN-13 978-981-15-0675-8 / 9789811506758
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 16,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99