Paper Microfluidics -

Paper Microfluidics (eBook)

Theory and Applications
eBook Download: PDF
2019 | 1st ed. 2019
XIII, 225 Seiten
Springer Singapore (Verlag)
978-981-15-0489-1 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This volume provides an overview of the recent advances in the field of paper microfluidics, whose  innumerable research domains have stimulated considerable efforts to the development of rapid, cost-effective and simplified point-of-care diagnostic systems. The book is divided into three parts viz. theoretical background of paper microfluidics, fabrication techniques for paper-based devices, and broad applications. Each chapter of the book is self-explanatory and focuses on a specific topic and its relation to paper microfluidics and starts with a brief description of the topic's physical background, essential definitions, and a short story of the recent progress in the relevant field. The book also covers the future outlook, remaining challenges, and emerging opportunities. This book shall be a tremendous up-to-date resource for researchers working in the area globally.

Dr. Shantanu Bhattacharya (PhD) is a Dr. Gurumukh T. and Veena M. Mehta Chair and Professor of Mechanical Engineering and the Head of Design Program at the Indian Institute of Technology Kanpur. Prior to this, he completed his MS in Mechanical Engineering from the Texas Tech University, Lubbock, Texas and a PhD in Bioengineering from the University of Missouri at Columbia, United States of America. He completed his postdoctoral training at the Birck Nanotechnology Center at Purdue University. Dr. Bhattacharya's main research interests are Design and development of micro- nanosensors and actuation platforms, nano-energetic materials, micro and nanofabrication technologies, water remediation using visible light photocatalysis and product design and development. He has many awards and accolades to his credit which includes the Institution of Engineers Young engineer award, the Institute of Smart structures and systems young scientist award, the national design research best mechanical engineering award, fellowship from the high energetic materials institute at Australia, fellowship of the Institution of Engineers of India etc. Dr. Bhattacharya has guided many PhD and masters' students and has many peer-reviewed international journal publications, patents, books, and conference proceedings.

Dr. Sanjay Kumar is currently a Research Fellow at the National University of Singapore, Singapore. He received his PhD in design and fabrication of functionally engineered materials from the Department of Mechanical Engineering, Indian Institute of Technology Kanpur, India. His research focuses on the development of design and development of acoustic metamaterials, acoustic wave control, paper-based analytical devices for point-of-care diagnostic applications, synthesis of nanoscale materials with controllable size and shape, design of multifunctional materials through self-assembly of nanoparticles, additive manufacturing processes, theoretical modeling and optimization, finite-element based numerical simulation, etc. He has published eight journal papers in peer reviewed international journals, six book chapters, and two US patent (filed). Along with Ms. Pulak Bhushan and Prof. Shantanu Bhattacharya, he received the Gandhian Young Technological Innovation (GYTI 2017) Award at Rashtrapati Bhavan, New Delhi, India for development of a dengue NS1 detection kit. He was also awarded the 'IFMBE Young Investigator Award' at the 2nd International Conference for Innovation in Biomedical Engineering and Life Sciences (ICIBEL2017) held in conjunction with the 10th Asia Pacific Conference on Medical and Biological Engineering (APCMBE2017) Malaysia.

Prof. Avinash Kumar Agarwal joined IIT Kanpur in 2001. He worked at the Engine Research Center, UW@Madison, USA as a Post-Doctoral Fellow (1999 - 2001). His interests are IC engines, combustion, alternate and conventional fuels, lubricating oil tribology, optical diagnostics, laser ignition, HCCI, emissions and particulate control, and large bore engines. Prof. Agarwal has published 270+ peer reviewed international journal and conference papers, 35 edited books, 63 books chapters and has 7850+ Scopus and 11900+ Google scholar citations. He is associate editor of ASME Journal of Energy Resources Technology. He has edited 'Handbook of Combustion' (5 Volumes; 3168 pages), published by Wiley VCH, Germany. Prof. Agarwal is a Fellow of SAE (2012), Fellow of ASME (2013), Fellow of NASI (2018), Fellow of Royal Society of Chemistry (2018), Fellow of ISEES (2015), and a Fellow of INAE (2015). He is recipient of several prestigious awards such as Clarivate Analystics India Citation Award-2017 in Engineering and Technology, NASI-Reliance Industries Platinum Jubilee Award-2012; INAE Silver Jubilee Young Engineer Award-2012; Dr. C. V. Raman Young Teachers Award: 2011; SAE Ralph R. Teetor Educational Award -2008; INSA Young Scientist Award-2007; UICT Young Scientist Award-2007; INAE Young Engineer Award-2005. Prof. Agarwal received Prestigious Shanti Swarup Bhatnagar Award-2016 in Engineering Sciences.


This volume provides an overview of the recent advances in the field of paper microfluidics, whose  innumerable research domains have stimulated considerable efforts to the development of rapid, cost-effective and simplified point-of-care diagnostic systems. The book is divided into three parts viz. theoretical background of paper microfluidics, fabrication techniques for paper-based devices, and broad applications. Each chapter of the book is self-explanatory and focuses on a specific topic and its relation to paper microfluidics and starts with a brief description of the topic's physical background, essential definitions, and a short story of the recent progress in the relevant field. The book also covers the future outlook, remaining challenges, and emerging opportunities. This book shall be a tremendous up-to-date resource for researchers working in the area globally.

Preface 6
Contents 9
About the Editors 11
1 A Historical Perspective on Paper Microfluidic Based Point-of-Care Diagnostics 14
Abstract 14
1.1 Introduction 14
1.2 Paper Microfluidics: Historical Perspective 15
1.3 Outline 16
References 17
2 Fluid Transport Mechanisms in Paper-Based Microfluidic Devices 19
Abstract 19
2.1 Introduction 20
2.2 Fluid Transport 23
2.2.1 Classical Lucas-Washburn Equation (Capillary Flow) 24
2.2.2 Darcy’s Law for Fluid Flow 26
2.2.3 Fluid Transport in the Porous Media of Varying Cross Section/Arbitrary Shape 27
2.2.4 Radial Fluid Transport in Porous Media 30
2.2.5 Diffusion-Based Fluid Transport 31
2.2.6 Lateral Flow Immunoassay (LFIA) 32
2.3 Summary 38
References 38
3 Fabrication Techniques for Paper-Based Microfluidic Devices 41
Abstract 41
3.1 Introduction 41
3.2 Fabrication Methods 43
3.2.1 2D Fabrication Methods 43
3.2.2 Flexographic Printing 45
3.2.3 3D Fabrication Methods 53
3.3 Comparison of Various Fabrication Methods 56
References 56
4 Flow Control in Paper-Based Microfluidic Devices 58
Abstract 58
4.1 Introduction 58
4.2 Fluid Flow Through Porous Substrates 59
4.2.1 Lucas-Washburn Equation 59
4.2.2 Darcy’s Equation for Fluid Flow 60
4.2.3 Richard’s Equation for Partially Saturated Flows 60
4.3 Controlling the Fluid Flow in Paperfluidic Devices 61
4.3.1 Techniques to Achieve Flow Control Without Valves 62
4.3.1.1 Changing the Channel Dimensions 62
4.3.1.2 Creation of Alternate Flow Paths 62
4.3.1.3 Changing the Surface Wettability 63
4.3.1.4 Changing the Properties of the Porous Substrate 65
4.3.1.5 Increasing the Resistance to Fluid Flow Using Physicochemical Barriers 65
4.3.1.6 Electrostatic Interactions Between Device Components 66
4.3.1.7 Varying the Channel Dimensions for Specific Introduction of Reagents 67
4.3.2 Techniques to Achieve Flow Control Utilizing Valve-Like Tools 68
4.3.2.1 Dissolvable Species 68
4.3.2.2 Mechanical Tools Which Connect or Disconnect Channels 69
4.3.2.3 Wax-Based Valves 71
4.3.2.4 Fluidic Diodes 72
4.3.2.5 Automatically Actuated External Valves 73
4.4 Challenges to Translation of Flow Control-Based Paperfluidic Devices 74
References 75
5 Paper Microfluidic Based Device for Blood/Plasma Separation 78
Abstract 78
5.1 Introduction 79
5.2 Physiological Hemodynamics and Porous Media Hemodynamics 81
5.3 Recent Advances in Paper Based Blood Plasma Separation Devices 82
5.4 Summary and Future Perspectives 89
References 90
6 Evolution of Paper Microfluidics as an Alternate Diagnostic Platform 93
Abstract 93
6.1 Introduction 94
6.2 Point-of-Care (POC) Diagnostics 95
6.3 Fabrication of Paper-Based Devices 96
6.4 Diagnostic Assays 99
6.4.1 Chemical-Based Assays 100
6.4.2 Immunoassays 101
6.4.3 DNA Hybridization on Paper 102
6.5 Blood Plasma Separation 103
6.6 Limitations of the Assays 104
6.7 Three-Dimensional (3D) Paper Devices 105
6.8 Conclusions and Outlook 106
References 106
7 Paper-Based Microfluidic Devices for the Detection of DNA 109
Abstract 109
7.1 Introduction 109
7.2 Evolution of Paper-Based Devices 111
7.3 Principle of Detection/Reaction Mechanism 112
7.4 Fabrication Schemes of Microfluidic Paper-Based Devices 113
7.4.1 Wax Printing 113
7.4.2 Photolithography 115
7.4.3 Inkjet Printing 115
7.4.4 Laser Treatment 115
7.4.5 Plasma Treatment 116
7.4.6 Wet Etching 116
7.5 Applications of ?PADs in DNA Sensing 118
7.6 Conclusions 119
References 121
8 Nucleic Acid Amplification on Paper Substrates 124
Abstract 124
8.1 Introduction 124
8.2 Nucleic Acid Extraction 126
8.3 Nucleic Acid Amplification 128
8.3.1 Loop-Mediated Isothermal Amplification (LAMP) 129
8.3.2 Helicase-Dependent Amplification (HDA) 134
8.3.3 Recombinase Polymerase Amplification (RPA) 137
8.3.4 Rolling Circle Amplification (RCA) 139
8.3.5 Strand Displacement Amplification (SDA) 140
8.4 Detection of the Amplified DNA 142
8.4.1 Colorimetric Detection 142
8.4.2 Fluorescence Detection 143
8.5 Factors Affecting the Efficiency of DNA Amplification on Paper 144
8.5.1 Choice of the Amplification Technique 145
8.5.2 Choice of the Paper Substrate 149
8.5.3 Role of Reagent Storage, Transport and Rehydration 150
8.6 Conclusion 151
References 152
9 Paper-Based Devices for Food Quality Control 156
Abstract 156
9.1 Introduction 157
9.2 Paper-Based Sensors in Microfluidics 158
9.3 Fabrication Techniques 160
9.3.1 Two-Dimensional Cutting 162
9.3.2 Wax Patterning 162
9.3.3 Flexographic Printing 162
9.3.4 Alkyl Ketene Dimer (AKD) Printing 163
9.3.5 Three-Dimensional (3D) Paper-Based Microfluidics 163
9.3.6 Additional Functional Elements 163
9.4 Applications to Food Quality Testing 165
9.4.1 Control of Food Adulteration 165
9.4.2 Pathogen Detection in Food 166
9.4.3 Pesticides and Herbicides Detection in Food 167
9.4.4 Heavy Metals in Food 167
9.5 Summary 167
References 168
10 Paper Based Sensors for Environmental Monitoring 173
Abstract 173
10.1 Introduction 173
10.2 Development of Paper Based Sensor 176
10.3 Detection Techniques 177
10.3.1 Calorimetry Detection 177
10.3.2 Surface-Enhanced Raman Spectroscopy (SERS) Based Detection 178
10.3.3 Electrochemical Detection 179
10.3.4 Luminescence Based Detection 180
10.4 Paper Based Sensors for Environmental Monitoring 181
10.4.1 Paper Based Sensor for Water Quality Monitoring 181
10.4.2 Paper Based Sensor for Air Quality Monitoring 184
10.5 Challenges 185
10.6 Conclusion 186
References 187
11 Paper-Based Energy Storage Devices 190
Abstract 190
11.1 Introduction 190
11.2 Fabrication Methods 192
11.2.1 Printing 192
11.2.2 Pencil Drawing 194
11.2.3 Chemical and Physical Deposition 196
11.2.4 Vacuum Filtration and Dip Coating 197
11.3 Conclusion 197
References 198
12 Paper-Based Devices for Wearable Diagnostic Applications 199
Abstract 199
12.1 Introduction 199
12.2 Fabrication Techniques of Microfluidic Paper-Based Analytical Devices 200
12.2.1 Photolithography 200
12.2.2 Inkjet Printing 201
12.2.3 Laser Cutting 202
12.2.4 Wax Printing 203
12.2.5 Polydimethyl-Siloxane (PDMS) Printing 203
12.3 Detection Techniques 203
12.3.1 Colorimetric Detection 203
12.3.2 Electrochemical Detection 205
12.3.3 Chemiluminescence Detection 205
12.3.4 Fluorescence 206
12.3.5 Electrochemiluminescence 206
12.4 Applications 207
12.5 Challenges and Future of Microfluidic Paper-Based Analytical Devices 210
12.6 Summary 212
References 213
13 Paper Microfluidic-Based Devices for Infectious Disease Diagnostics 215
Abstract 215
13.1 Introduction 215
13.2 Pathogen Detection 216
13.2.1 Escherichia Coli 216
13.2.2 Plasmodium 217
13.2.3 HIV 218
13.2.4 HBV 219
13.2.5 ZIKA Virus 220
13.3 Health Diagnostics 220
13.4 Commercialization and Challenges 226
13.5 Conclusion and Future Perspectives 228
References 230

Erscheint lt. Verlag 8.10.2019
Reihe/Serie Advanced Functional Materials and Sensors
Advanced Functional Materials and Sensors
Zusatzinfo XIII, 225 p.
Sprache englisch
Themenwelt Medizin / Pharmazie Allgemeines / Lexika
Medizin / Pharmazie Pflege
Medizin / Pharmazie Physiotherapie / Ergotherapie Orthopädie
Naturwissenschaften Biologie Genetik / Molekularbiologie
Naturwissenschaften Chemie
Naturwissenschaften Physik / Astronomie Festkörperphysik
Naturwissenschaften Physik / Astronomie Thermodynamik
Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Technik Medizintechnik
Technik Umwelttechnik / Biotechnologie
Schlagworte biochemical engineering • Capillary flow • Energy Storage • Paper Microfluidics • point-of-care diagnostics • Wearable sensors
ISBN-10 981-15-0489-X / 981150489X
ISBN-13 978-981-15-0489-1 / 9789811504891
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich